Constructing mechanically robust, efficient self‐healing, high‐energy, and recyclable energetic composites by hybrid dynamic lock strategy

SmartMat Pub Date : 2024-01-31 DOI:10.1002/smm2.1277
Zhe Sun, Yuhang Cheng, Borao Wan, Xiaoming Jin, Tianfu Zhang, Hongyi Zhu, Qi Xue, Lei Xiao, Guigao Liu, Wei Jiang, Guangpu Zhang
{"title":"Constructing mechanically robust, efficient self‐healing, high‐energy, and recyclable energetic composites by hybrid dynamic lock strategy","authors":"Zhe Sun, Yuhang Cheng, Borao Wan, Xiaoming Jin, Tianfu Zhang, Hongyi Zhu, Qi Xue, Lei Xiao, Guigao Liu, Wei Jiang, Guangpu Zhang","doi":"10.1002/smm2.1277","DOIUrl":null,"url":null,"abstract":"It is still a huge challenge to introduce effective crack‐healing ability into energetic composites with a high oxidizer content. In this article, a poly(urea‐urethane) energetic elastomer was prepared by the polycondensation reaction of glycidyl azido polymer (GAP), isophorone diisocyanate (IPDI), and 2‐aminophenyl disulfide (2‐APD). In the poly(urea‐urethane) elastomer structure, the hybrid dynamic lock, including multilevel H‐bonds and disulfide bonds, not only provides abundant dynamic interactions and promotes chain diffusion, but also enhances physical crosslinking density. Such a unique design fabricated the energetic elastomer with robust tensile strength (0.72 MPa), high stretchability (1631%), and outstanding toughness (8.95 MJ/m3) in the field of energetic polymers. Meanwhile, this energetic elastomer exhibited high self‐healing efficiency (98.4% at 60 °C) and heat release (Q = 1750.46 J/g). Experimental and theoretical results adequately explain the self‐healing mechanism, particularly the role of azido units. The high‐solid content (80 wt%) energetic composites based on the energetic elastomer presented outstanding micro‐defect self‐healing (97.8%) and recycling without loss of mechanical performance. The development of smart energetic composites with excellent self‐healing and recyclable ability provides a meaningful way for a wide range of applications in the field of energetic materials.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is still a huge challenge to introduce effective crack‐healing ability into energetic composites with a high oxidizer content. In this article, a poly(urea‐urethane) energetic elastomer was prepared by the polycondensation reaction of glycidyl azido polymer (GAP), isophorone diisocyanate (IPDI), and 2‐aminophenyl disulfide (2‐APD). In the poly(urea‐urethane) elastomer structure, the hybrid dynamic lock, including multilevel H‐bonds and disulfide bonds, not only provides abundant dynamic interactions and promotes chain diffusion, but also enhances physical crosslinking density. Such a unique design fabricated the energetic elastomer with robust tensile strength (0.72 MPa), high stretchability (1631%), and outstanding toughness (8.95 MJ/m3) in the field of energetic polymers. Meanwhile, this energetic elastomer exhibited high self‐healing efficiency (98.4% at 60 °C) and heat release (Q = 1750.46 J/g). Experimental and theoretical results adequately explain the self‐healing mechanism, particularly the role of azido units. The high‐solid content (80 wt%) energetic composites based on the energetic elastomer presented outstanding micro‐defect self‐healing (97.8%) and recycling without loss of mechanical performance. The development of smart energetic composites with excellent self‐healing and recyclable ability provides a meaningful way for a wide range of applications in the field of energetic materials.
通过混合动态锁定策略构建机械坚固、高效自愈合、高能量和可回收的高能量复合材料
在氧化剂含量较高的高能复合材料中引入有效的裂纹愈合能力仍然是一个巨大的挑战。本文通过缩水甘油叠氮聚合物(GAP)、异佛尔酮二异氰酸酯(IPDI)和 2-氨基苯基二硫化物(2-APD)的缩聚反应,制备了一种聚脲-聚氨酯高能弹性体。在聚(脲-尿烷)弹性体结构中,包括多级 H 键和二硫键在内的混合动力锁不仅提供了丰富的动力相互作用,促进了链的扩散,还提高了物理交联密度。这种独特的设计制造出的高能弹性体具有强大的拉伸强度(0.72 兆帕)、高拉伸性(1631%)和出色的韧性(8.95 兆焦耳/立方米),在高能聚合物领域独树一帜。同时,这种高能弹性体还具有很高的自愈效率(60 °C时为98.4%)和热释放率(Q = 1750.46 J/g)。实验和理论结果充分解释了自愈机理,尤其是叠氮单元的作用。基于高能弹性体的高固含量(80 wt%)高能复合材料具有出色的微缺陷自愈合能力(97.8%),可回收再利用,且无机械性能损失。具有优异自愈合和可回收能力的智能高能复合材料的开发为高能材料领域的广泛应用提供了有意义的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信