Salman Khan, Zainab Ali, Khadija Rehman, Massab Junaid
{"title":"Mechanical and Microstructural Characterization of Diffusion-Bonded Copper-Nickel Joint Interface","authors":"Salman Khan, Zainab Ali, Khadija Rehman, Massab Junaid","doi":"10.4028/p-k8wuuo","DOIUrl":null,"url":null,"abstract":"Solid-state diffusion bonding effectively joins dissimilar materials, even with varying metallurgical properties and melting points. In this study, a Cu/Ni joint was produced at a bonding temperature of 950°C for 60 minutes under a vacuum. The microstructural and mechanical properties of the bonding interface were evaluated using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), microhardness tests, and X-ray diffraction (XRD). It was found that the EDS point scan analysis revealed the formation of a solid solution of Cu-Ni at the bonding interface. Since Cu-Ni exhibit complete solubility with each other, no intermetallic compounds (IMCs) were formed. The microhardness indicated that the bonding interface had a microhardness of 20% and 54% higher than the base metals (BM) of Ni and Cu, respectively.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-k8wuuo","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state diffusion bonding effectively joins dissimilar materials, even with varying metallurgical properties and melting points. In this study, a Cu/Ni joint was produced at a bonding temperature of 950°C for 60 minutes under a vacuum. The microstructural and mechanical properties of the bonding interface were evaluated using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), microhardness tests, and X-ray diffraction (XRD). It was found that the EDS point scan analysis revealed the formation of a solid solution of Cu-Ni at the bonding interface. Since Cu-Ni exhibit complete solubility with each other, no intermetallic compounds (IMCs) were formed. The microhardness indicated that the bonding interface had a microhardness of 20% and 54% higher than the base metals (BM) of Ni and Cu, respectively.