Juan Cruz Ghilardi Truffa, L. Ruíz, Pierre Pitte, Lautaro Clavero
{"title":"Fluctuaciones recientes del glaciar Alerce (1953-2020), Andes de Patagonia norte","authors":"Juan Cruz Ghilardi Truffa, L. Ruíz, Pierre Pitte, Lautaro Clavero","doi":"10.5027/andgeov51n1-3644","DOIUrl":null,"url":null,"abstract":"In recent decades, glacier retreat has been observed in all the world’s mountain ranges. Over the last 20 years, glaciers in the Andes have lost mass at one of the highest rates on record. Particularly, glaciers in the northern Patagonian Andes show the highest rate of loss of all the Andean regions for the last decade. Detailed records of long-term variations in glacier extent are crucial to put current climate change into context and quantify its impact on mountain areas. In the present study, a reconstruction of the extension (length and area) of the Alerce glacier (41.15° S-71.81° W) for the last 70 years was carried out. By means of historical documents and satellite images (Landsat and Pléiades), detailed maps of glacier fluctuations were generated for the period 1953-2020. Four methodologies were evaluated to measure the front position: i) central flow line; ii) curvilinear box; iii) multiline; and iv) variable box. The magnitude of the front position variations depends on the methodology applied. The method that best addresses glacier front variations over the period analyzed is the variable box method. Between 1953 and 2020, the Alerce glacier lost 35% of its area (1.1±0.1 km2) and 67% of its total length (1.49±0.04 km). It is possible to distinguish periods with different rates of retreat. A stage of slight retreat (-11.3±0.5 ma-1) between 1953 and 1976, followed by a period of stability (-6.7±0.5 ma-1) between 1977 and 1983, then a strong retreat (-58.7±0.5 ma-1) between 1984 and 1999, followed by another period of stability (-5.4±0.5 ma-1) between 2000 and 2009 and, finally, another retreat (-8.7±0.5 ma-1) between 2010 and 2020. The retreat rates for the Alerce glacier mimic those observed in other glaciers in the region, possibly representing a regional climatic signal.","PeriodicalId":49108,"journal":{"name":"Andean Geology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Andean Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5027/andgeov51n1-3644","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, glacier retreat has been observed in all the world’s mountain ranges. Over the last 20 years, glaciers in the Andes have lost mass at one of the highest rates on record. Particularly, glaciers in the northern Patagonian Andes show the highest rate of loss of all the Andean regions for the last decade. Detailed records of long-term variations in glacier extent are crucial to put current climate change into context and quantify its impact on mountain areas. In the present study, a reconstruction of the extension (length and area) of the Alerce glacier (41.15° S-71.81° W) for the last 70 years was carried out. By means of historical documents and satellite images (Landsat and Pléiades), detailed maps of glacier fluctuations were generated for the period 1953-2020. Four methodologies were evaluated to measure the front position: i) central flow line; ii) curvilinear box; iii) multiline; and iv) variable box. The magnitude of the front position variations depends on the methodology applied. The method that best addresses glacier front variations over the period analyzed is the variable box method. Between 1953 and 2020, the Alerce glacier lost 35% of its area (1.1±0.1 km2) and 67% of its total length (1.49±0.04 km). It is possible to distinguish periods with different rates of retreat. A stage of slight retreat (-11.3±0.5 ma-1) between 1953 and 1976, followed by a period of stability (-6.7±0.5 ma-1) between 1977 and 1983, then a strong retreat (-58.7±0.5 ma-1) between 1984 and 1999, followed by another period of stability (-5.4±0.5 ma-1) between 2000 and 2009 and, finally, another retreat (-8.7±0.5 ma-1) between 2010 and 2020. The retreat rates for the Alerce glacier mimic those observed in other glaciers in the region, possibly representing a regional climatic signal.
期刊介绍:
This journal publishes original and review articles on geology and related sciences, in Spanish or English, in three issues a year (January, May and September). Articles or notes on major topics of broad interest in Earth Sciences dealing with the geology of South and Central America and Antarctica, and particularly of the Andes, are welcomed.
The journal is interested in publishing thematic sets of papers and accepts articles dealing with systematic Paleontology only if their main focus is the chronostratigraphical, paleoecological and/or paleogeographical importance of the taxa described therein.