K. Henna Parveen, Jumana Muhammed, V.K. Sneha, P. Busheera, Anu Augustine
{"title":"OMICS strategies: Revealing the enigma of salinity tolerance in mangroves","authors":"K. Henna Parveen, Jumana Muhammed, V.K. Sneha, P. Busheera, Anu Augustine","doi":"10.1016/j.cropd.2024.100052","DOIUrl":null,"url":null,"abstract":"<div><p>Salinity is a significant challenge for agriculture, negatively impacting soil health and crop yields worldwide. Coping with salinity stress is intricate due to its multifaceted nature, making it challenging to fully grasp. Mangroves, recognized for their salt tolerance, thrive in diverse salinity levels, spanning from freshwater to seawater. They play a vital role in coastal ecosystems, thriving in areas where many other plants struggle. For a thorough knowledge of the salinity stress signaling and tolerance mechanism in mangroves, a variety of “omics” techniques have been explored. Recent research has illuminated crucial pathways, transcription factors, microRNAs, and signaling components in mangroves exposed to salty conditions. This knowledge holds promise for developing salt-tolerant crop plants through genetic modification techniques, which can help address the increasing issue of soil salinity. Our review encompasses genomics and transcriptomics studies that identify crucial genes and pathways in mangroves' response to salinity. Since the transcriptome lacks a direct correlation with the protein expression dynamics, we have also emphasized mangrove proteomics and metabolomics studies. The review also outlines the different strategies that can be used to enhance the salinity tolerance of crops using mangroves as models.</p></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"3 2","pages":"Article 100052"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772899424000016/pdfft?md5=22d6ee653fdea040d2e86568bf24bab8&pid=1-s2.0-S2772899424000016-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772899424000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Salinity is a significant challenge for agriculture, negatively impacting soil health and crop yields worldwide. Coping with salinity stress is intricate due to its multifaceted nature, making it challenging to fully grasp. Mangroves, recognized for their salt tolerance, thrive in diverse salinity levels, spanning from freshwater to seawater. They play a vital role in coastal ecosystems, thriving in areas where many other plants struggle. For a thorough knowledge of the salinity stress signaling and tolerance mechanism in mangroves, a variety of “omics” techniques have been explored. Recent research has illuminated crucial pathways, transcription factors, microRNAs, and signaling components in mangroves exposed to salty conditions. This knowledge holds promise for developing salt-tolerant crop plants through genetic modification techniques, which can help address the increasing issue of soil salinity. Our review encompasses genomics and transcriptomics studies that identify crucial genes and pathways in mangroves' response to salinity. Since the transcriptome lacks a direct correlation with the protein expression dynamics, we have also emphasized mangrove proteomics and metabolomics studies. The review also outlines the different strategies that can be used to enhance the salinity tolerance of crops using mangroves as models.