Compressive Perception Image Reconstruction Technology for Basic Mixed Sparse Basis in Metal Surface Detection

Xiang-Yun Yi Xiang-Yun Yi, Xiao-Bo Dong Xiang-Yun Yi, Liang-Gui Zhang Xiao-Bo Dong, Yan-Chao Sun Liang-Gui Zhang, Wen-Tao Li Yan-Chao Sun, Tao Zhang Wen-Tao Li
{"title":"Compressive Perception Image Reconstruction Technology for Basic Mixed Sparse Basis in Metal Surface Detection","authors":"Xiang-Yun Yi Xiang-Yun Yi, Xiao-Bo Dong Xiang-Yun Yi, Liang-Gui Zhang Xiao-Bo Dong, Yan-Chao Sun Liang-Gui Zhang, Wen-Tao Li Yan-Chao Sun, Tao Zhang Wen-Tao Li","doi":"10.53106/199115992024023501011","DOIUrl":null,"url":null,"abstract":"\n Applying Compressed Sensing (CS) technology to robot vision image transmission, an effective method for image reconstruction in robot imaging is proposed to improve the accuracy of reconstruction. Reconstructing images using a mixed sparse representation of DCT and circularly symmetric contour wave transform, the basic algorithm used is the Smoothed Projection Landweber (SPL) algorithm, which optimizes the coefficients under different sparse transformations by incorporating hard thresholding and binary thresholding methods for different sparse bases during iterations. The experiment shows that compared with single sparse base image reconstruction, the proposed reconstruction method has improved reconstruction accuracy.\n \n","PeriodicalId":345067,"journal":{"name":"電腦學刊","volume":"1339 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"電腦學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/199115992024023501011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Applying Compressed Sensing (CS) technology to robot vision image transmission, an effective method for image reconstruction in robot imaging is proposed to improve the accuracy of reconstruction. Reconstructing images using a mixed sparse representation of DCT and circularly symmetric contour wave transform, the basic algorithm used is the Smoothed Projection Landweber (SPL) algorithm, which optimizes the coefficients under different sparse transformations by incorporating hard thresholding and binary thresholding methods for different sparse bases during iterations. The experiment shows that compared with single sparse base image reconstruction, the proposed reconstruction method has improved reconstruction accuracy.  
金属表面检测中基本混合稀疏基的压缩感知图像重建技术
将压缩传感(CS)技术应用于机器人视觉图像传输,提出了一种有效的机器人成像图像重建方法,以提高重建的准确性。利用 DCT 和圆周对称轮廓波变换的混合稀疏表示重建图像,使用的基本算法是平滑投影兰德韦伯算法(SPL),该算法在迭代过程中针对不同的稀疏基,结合硬阈值和二进制阈值方法,优化不同稀疏变换下的系数。实验表明,与单稀疏基图像重建相比,所提出的重建方法提高了重建精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信