Unified wavefront singularity characterization of three-dimensional elastodynamic time-domain half-space Green's function under impulsive boundary and internal loads

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ronald Y. S. Pak, X. Bai
{"title":"Unified wavefront singularity characterization of three-dimensional elastodynamic time-domain half-space Green's function under impulsive boundary and internal loads","authors":"Ronald Y. S. Pak, X. Bai","doi":"10.1098/rspa.2023.0515","DOIUrl":null,"url":null,"abstract":"Founded on a novel analytical formulation that led to a rigorous yet compact path-integral representation of the time-domain elastodynamic half-space Green's function, a unified analysis of the possible occurrence of different singular wavefront behaviour in the response under arbitrary impulsive internal or surface point loads at arbitrary source-receiver locations is presented. With the decomposition of the general solution into distinct initiating and reflected wave group integrals that share a common factored format and simple contour definitions, the mathematical framework is shown to allow a straightforward identification of the specific conditions and the particular wave groups that are responsible for the singular wavefront phenomena without resorting to advanced analytic function theories or asymptotic methods. Analytic characterizations of the nature, strength and direction of all intrinsic singular wavefront behaviours of the three-dimensional Green's function in three canonical cases of source-receiver configurations are given in a dual integral-closed form format to facilitate their theoretical understanding as well as computational applications. Graphical illustrations of their variation with the source-receiver configuration and the medium's Poisson's ratio together with relevant comparison and clarifications of some classical treatments are included.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0515","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Founded on a novel analytical formulation that led to a rigorous yet compact path-integral representation of the time-domain elastodynamic half-space Green's function, a unified analysis of the possible occurrence of different singular wavefront behaviour in the response under arbitrary impulsive internal or surface point loads at arbitrary source-receiver locations is presented. With the decomposition of the general solution into distinct initiating and reflected wave group integrals that share a common factored format and simple contour definitions, the mathematical framework is shown to allow a straightforward identification of the specific conditions and the particular wave groups that are responsible for the singular wavefront phenomena without resorting to advanced analytic function theories or asymptotic methods. Analytic characterizations of the nature, strength and direction of all intrinsic singular wavefront behaviours of the three-dimensional Green's function in three canonical cases of source-receiver configurations are given in a dual integral-closed form format to facilitate their theoretical understanding as well as computational applications. Graphical illustrations of their variation with the source-receiver configuration and the medium's Poisson's ratio together with relevant comparison and clarifications of some classical treatments are included.
冲击边界和内部载荷下三维弹性时域半空间格林函数的统一波前奇异性表征
基于新颖的分析表述,对时域弹性动力学半空间格林函数进行了严格而紧凑的路径积分表述,对在任意源接收器位置的任意冲击内部或表面点载荷作用下可能出现的不同奇异波前响应行为进行了统一分析。通过将一般解法分解为不同的起始波群积分和反射波群积分(它们具有共同的因式分解格式和简单的等值线定义),数学框架被证明可以直接识别导致奇异波面现象的特定条件和特定波群,而无需诉诸高级解析函数理论或渐近方法。在源-接收器配置的三种典型情况下,对三维格林函数所有本征奇异波面行为的性质、强度和方向的分析表征,以双积分封闭形式给出,以促进对它们的理论理解和计算应用。图解说明了它们随声源-接收器配置和介质泊松比的变化,并对一些经典处理方法进行了相关比较和澄清。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信