Machine acceleration time series prediction for dimensional accuracy of 3D printed parts

{"title":"Machine acceleration time series prediction for dimensional accuracy of 3D printed parts","authors":"","doi":"10.1016/j.dsm.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional (3D) printing, particularly focusing on extrusion technology. Our primary objective was to develop a long short-term memory (LSTM) network capable of assessing this impact. We conducted an extensive analysis involving 12 distinct infill patterns, collecting time-series data to examine their effects on the acceleration of the printer’s bed. The LSTM network was trained using acceleration data from the adaptive cubic infill pattern, while the Archimedean chords infill pattern provided data for evaluating the network’s prediction accuracy. This involved utilizing offline time-series acceleration data as the training and testing datasets for the LSTM model. Specifically, the LSTM model was devised to predict the acceleration of a fused deposition modeling (FDM) printer using data from the adaptive cubic infill pattern. Rigorous testing yielded a root mean square error (RMSE) of 0.007144, reflecting the model’s precision. Further refinement and testing of the LSTM model were conducted using acceleration data from the Archimedean chords infill pattern, resulting in an RMSE of 0.007328. Notably, the developed LSTM model demonstrated superior performance compared to an optimized recurrent neural network (RNN) in predicting machine acceleration data. The empirical findings highlight that the adaptive cubic infill pattern considerably influences the dimensional accuracy of parts printed using FDM technology.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666764924000122/pdfft?md5=5279d6a024ea6a759468bdafb34bcc56&pid=1-s2.0-S2666764924000122-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764924000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional (3D) printing, particularly focusing on extrusion technology. Our primary objective was to develop a long short-term memory (LSTM) network capable of assessing this impact. We conducted an extensive analysis involving 12 distinct infill patterns, collecting time-series data to examine their effects on the acceleration of the printer’s bed. The LSTM network was trained using acceleration data from the adaptive cubic infill pattern, while the Archimedean chords infill pattern provided data for evaluating the network’s prediction accuracy. This involved utilizing offline time-series acceleration data as the training and testing datasets for the LSTM model. Specifically, the LSTM model was devised to predict the acceleration of a fused deposition modeling (FDM) printer using data from the adaptive cubic infill pattern. Rigorous testing yielded a root mean square error (RMSE) of 0.007144, reflecting the model’s precision. Further refinement and testing of the LSTM model were conducted using acceleration data from the Archimedean chords infill pattern, resulting in an RMSE of 0.007328. Notably, the developed LSTM model demonstrated superior performance compared to an optimized recurrent neural network (RNN) in predicting machine acceleration data. The empirical findings highlight that the adaptive cubic infill pattern considerably influences the dimensional accuracy of parts printed using FDM technology.

用于 3D 打印部件尺寸精度的机器加速度时间序列预测
本研究探讨了填充模式对三维(3D)打印领域机器加速度预测的影响,尤其侧重于挤压技术。我们的主要目标是开发一种能够评估这种影响的长短期记忆(LSTM)网络。我们对 12 种不同的填充模式进行了广泛的分析,收集了时间序列数据,以研究它们对打印机床面加速度的影响。LSTM 网络使用自适应立方填充模式的加速度数据进行训练,而阿基米德弦填充模式则为评估网络的预测准确性提供数据。这包括利用离线时间序列加速度数据作为 LSTM 模型的训练和测试数据集。具体来说,LSTM 模型是利用自适应立方体填充模式的数据来预测熔融沉积建模(FDM)打印机的加速度。严格测试的均方根误差(RMSE)为 0.007144,反映了模型的精确性。使用来自阿基米德弦填充图案的加速度数据对 LSTM 模型进行了进一步改进和测试,结果 RMSE 为 0.007328。值得注意的是,与优化的循环神经网络(RNN)相比,所开发的 LSTM 模型在预测机器加速度数据方面表现出更优越的性能。实证研究结果表明,自适应立方体填充模式极大地影响了使用 FDM 技术打印的零件的尺寸精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信