Klasik ve Bulanık Kenar Algılama Yöntemlerinin Karşılaştırılması

Gulcihan Ozdemi̇r
{"title":"Klasik ve Bulanık Kenar Algılama Yöntemlerinin Karşılaştırılması","authors":"Gulcihan Ozdemi̇r","doi":"10.36306/konjes.1116833","DOIUrl":null,"url":null,"abstract":"Edge detection is one of the challenging problems in image processing. Four different classical edge detection methods—Sobel, Prewitt, Roberts, and Canny—and type-1 and type-2 fuzzy logic-based edge detection methods are applied to analyze two separate datasets with various properties. The datasets are STARE which contains medical images of the retina and BIPED which contains images of the street. Furthermore, two separate hybrid fuzzy logic methods are implemented. The type-1 and type-2 fuzzy inference techniques are combined to produce the hybrid-1 and hybrid-2 approaches, using the \"AND\" and \"OR\" logic operators. We compare the simulation results for each technique using three different image quality metrics. These are Mean Square Error (MSE), Peak Signal Noise Ratio (PSNR), and Structural Similarity Index (SSIM). The type-2 fuzzy technique outperformed the hybrid-1 fuzzy method in visual quality metrics comparison, demonstrating superior blood vessel recognition on the STARE retinal image dataset—a dataset that more closely resembles the human visual system. Using the BIPED street image dataset, the hybrid-1 fuzzy approach outperformed the Roberts method. The hybrid-1 fuzzy technique showed good results in the second order for both kinds of datasets. Any data and general applications can take advantage of it.","PeriodicalId":17899,"journal":{"name":"Konya Journal of Engineering Sciences","volume":"37 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Konya Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36306/konjes.1116833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Edge detection is one of the challenging problems in image processing. Four different classical edge detection methods—Sobel, Prewitt, Roberts, and Canny—and type-1 and type-2 fuzzy logic-based edge detection methods are applied to analyze two separate datasets with various properties. The datasets are STARE which contains medical images of the retina and BIPED which contains images of the street. Furthermore, two separate hybrid fuzzy logic methods are implemented. The type-1 and type-2 fuzzy inference techniques are combined to produce the hybrid-1 and hybrid-2 approaches, using the "AND" and "OR" logic operators. We compare the simulation results for each technique using three different image quality metrics. These are Mean Square Error (MSE), Peak Signal Noise Ratio (PSNR), and Structural Similarity Index (SSIM). The type-2 fuzzy technique outperformed the hybrid-1 fuzzy method in visual quality metrics comparison, demonstrating superior blood vessel recognition on the STARE retinal image dataset—a dataset that more closely resembles the human visual system. Using the BIPED street image dataset, the hybrid-1 fuzzy approach outperformed the Roberts method. The hybrid-1 fuzzy technique showed good results in the second order for both kinds of datasets. Any data and general applications can take advantage of it.
经典边缘检测方法与模糊边缘检测方法的比较
边缘检测是图像处理中极具挑战性的问题之一。四种不同的经典边缘检测方法--Sobel、Prewitt、Roberts 和 Canny,以及基于第一类和第二类模糊逻辑的边缘检测方法,被应用于分析两个具有不同属性的独立数据集。这两个数据集分别是包含视网膜医学图像的 STARE 数据集和包含街道图像的 BIPED 数据集。此外,还采用了两种不同的混合模糊逻辑方法。使用 "AND "和 "OR "逻辑运算符,将类型-1 和类型-2 模糊推理技术结合起来,产生了混合-1 和混合-2 方法。我们使用三种不同的图像质量指标来比较每种技术的模拟结果。这三个指标是平均平方误差(MSE)、峰值信号噪声比(PSNR)和结构相似性指数(SSIM)。在视觉质量指标比较中,第 2 类模糊技术优于第 1 类混合模糊方法,在 STARE 视网膜图像数据集--一个更接近人类视觉系统的数据集--上显示出更出色的血管识别能力。在使用 BIPED 街道图像数据集时,混合-1 模糊方法的性能优于罗伯茨方法。对于这两种数据集,混合-1 模糊技术都显示出了二阶的良好效果。任何数据和一般应用都可以利用它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信