Time-Velocity Decay of Solutions to the Non-cutoff Boltzmann Equation in the Whole Space

Chuqi Cao, Renjun Duan, Zongguang Li
{"title":"Time-Velocity Decay of Solutions to the Non-cutoff Boltzmann Equation in the Whole Space","authors":"Chuqi Cao, Renjun Duan, Zongguang Li","doi":"10.4208/cmaa.2024-0003","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the perturbed solutions with polynomial tail in large velocities for the non-cutoff Boltzmann equation near global Maxwellians in the whole space. The global in time existence is proved in the weighted Sobolev spaces and the almost optimal time decay is obtained in Fourier transform based low-regularity spaces. The result shows a time-velocity decay structure of solutions that can be decomposed into two parts. One part allows the slow polynomial tail in large velocities, carries the initial data and enjoys the exponential or arbitrarily large polynomial time decay. The other part, with zero initial data, is dominated by the non-negative definite symmetric dissipation and has the exponential velocity decay but only the slow polynomial time decay.","PeriodicalId":371957,"journal":{"name":"Communications in Mathematical Analysis and Applications","volume":"169 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cmaa.2024-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the perturbed solutions with polynomial tail in large velocities for the non-cutoff Boltzmann equation near global Maxwellians in the whole space. The global in time existence is proved in the weighted Sobolev spaces and the almost optimal time decay is obtained in Fourier transform based low-regularity spaces. The result shows a time-velocity decay structure of solutions that can be decomposed into two parts. One part allows the slow polynomial tail in large velocities, carries the initial data and enjoys the exponential or arbitrarily large polynomial time decay. The other part, with zero initial data, is dominated by the non-negative definite symmetric dissipation and has the exponential velocity decay but only the slow polynomial time decay.
全空间非截止波尔兹曼方程解的时速衰减
在本文中,我们考虑了整个空间中全局马克斯韦尔附近的非截尾玻尔兹曼方程在大速度下具有多项式尾部的扰动解。在加权索波列夫空间中证明了全局时间存在性,并在基于傅立叶变换的低规则性空间中获得了几乎最优的时间衰减。结果显示,解的时间速度衰减结构可分解为两部分。一部分允许大速度下的多项式慢尾,携带初始数据并享受指数或任意大的多项式时间衰减。另一部分初始数据为零,由非负定对称耗散主导,具有指数速度衰减,但只有缓慢的多项式时间衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信