CMA-R: Causal Mediation Analysis for Explaining Rumour Detection

Findings Pub Date : 2024-02-13 DOI:10.48550/arXiv.2402.08155
Lin Tian, Xiuzhen Zhang, Jey Han Lau
{"title":"CMA-R: Causal Mediation Analysis for Explaining Rumour Detection","authors":"Lin Tian, Xiuzhen Zhang, Jey Han Lau","doi":"10.48550/arXiv.2402.08155","DOIUrl":null,"url":null,"abstract":"We apply causal mediation analysis to explain the decision-making process of neural models for rumour detection on Twitter.Interventions at the input and network level reveal the causal impacts of tweets and words in the model output.We find that our approach CMA-R – Causal Mediation Analysis for Rumour detection – identifies salient tweets that explain model predictions and show strong agreement with human judgements for critical tweets determining the truthfulness of stories.CMA-R can further highlight causally impactful words in the salient tweets, providing another layer of interpretability and transparency into these blackbox rumour detection systems. Code is available at: https://github.com/ltian678/cma-r.","PeriodicalId":508951,"journal":{"name":"Findings","volume":"184 ","pages":"1667-1675"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.08155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We apply causal mediation analysis to explain the decision-making process of neural models for rumour detection on Twitter.Interventions at the input and network level reveal the causal impacts of tweets and words in the model output.We find that our approach CMA-R – Causal Mediation Analysis for Rumour detection – identifies salient tweets that explain model predictions and show strong agreement with human judgements for critical tweets determining the truthfulness of stories.CMA-R can further highlight causally impactful words in the salient tweets, providing another layer of interpretability and transparency into these blackbox rumour detection systems. Code is available at: https://github.com/ltian678/cma-r.
CMA-R:解释谣言检测的因果中介分析
我们应用因果中介分析来解释推特上谣言检测神经模型的决策过程。输入和网络层面的干预揭示了模型输出中推文和词语的因果影响。我们发现,我们的方法CMA-R--谣言检测的因果中介分析--可以识别突出的推文,这些推文可以解释模型的预测,并与人类对决定故事真实性的关键推文的判断显示出很强的一致性。CMA-R可以进一步突出突出推文中有因果影响的词语,为这些黑盒子谣言检测系统提供了另一层可解释性和透明度。代码见:https://github.com/ltian678/cma-r。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信