L.V. Ignatova, Z. K. Urazova, Y. Brazhnikova, N.V. Vedyashkina
{"title":"Obtaining Edible Pullulan-based Films with Antimicrobial Properties","authors":"L.V. Ignatova, Z. K. Urazova, Y. Brazhnikova, N.V. Vedyashkina","doi":"10.18321/ectj1547","DOIUrl":null,"url":null,"abstract":"A nutrient medium was selected for the efficient production of exopolysaccharide (EPS) by A. pullulans C7 strain. The production of pullulan polysaccharide was evaluated on nutrient media with traditional carbon sources and cheap substrates that were plant wastes. For maximum EPS accumulation, we proposed an optimized Czapek-Dox medium with glucose as a carbon source, sodium nitrate as a nitrogen source, and C/N=232:1 ratio (EPS yield 12.79±0.64 g/l). Medium with grape pomace 5% (EPS yield was 15.08±0.34 g/l) and medium with topinambour tuber hydrolysate 5% (EPS yield was 14.44±0.21 g/l) was proposed as a cheap substrate. Edible films with antimicrobial activity were obtained on the basis of the isolated polysaccharide. The antibacterial activity of films against Escherichia coli 603 and Staphylococcus aureus ST228 was shown when essential oils of rosemary (zones of growth inhibition from 8.41±0.71 to 9.98±0.32 mm) and oregano (zones of growth inhibition from 8.09±0.51 to 9.54±0.24 mm) were added to pullulan. The addition of xanthan gum and glycerol to the films increased their strength and elasticity. The infrared spectrum of the pullulan film showed absorption bands characteristic of polysaccharide structures.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A nutrient medium was selected for the efficient production of exopolysaccharide (EPS) by A. pullulans C7 strain. The production of pullulan polysaccharide was evaluated on nutrient media with traditional carbon sources and cheap substrates that were plant wastes. For maximum EPS accumulation, we proposed an optimized Czapek-Dox medium with glucose as a carbon source, sodium nitrate as a nitrogen source, and C/N=232:1 ratio (EPS yield 12.79±0.64 g/l). Medium with grape pomace 5% (EPS yield was 15.08±0.34 g/l) and medium with topinambour tuber hydrolysate 5% (EPS yield was 14.44±0.21 g/l) was proposed as a cheap substrate. Edible films with antimicrobial activity were obtained on the basis of the isolated polysaccharide. The antibacterial activity of films against Escherichia coli 603 and Staphylococcus aureus ST228 was shown when essential oils of rosemary (zones of growth inhibition from 8.41±0.71 to 9.98±0.32 mm) and oregano (zones of growth inhibition from 8.09±0.51 to 9.54±0.24 mm) were added to pullulan. The addition of xanthan gum and glycerol to the films increased their strength and elasticity. The infrared spectrum of the pullulan film showed absorption bands characteristic of polysaccharide structures.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.