Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization

Sarjon Defit, A. Windarto, Putrama Alkhairi
{"title":"Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization","authors":"Sarjon Defit, A. Windarto, Putrama Alkhairi","doi":"10.35671/telematika.v17i1.2824","DOIUrl":null,"url":null,"abstract":"Optimizing classification methods (forward selection, backward elimination, and optimized selection) and ensemble techniques (AdaBoost and Bagging) are essential for accurate sentiment analysis, particularly in political contexts on social media. This research compares advanced classification models with standard ones (Decision Tree, Random Tree, Naive Bayes, Random Forest, K- NN, Neural Network, and Generalized Linear Model), analyzing 1,200 tweets from December 10-11, 2023, focusing on \"Indonesia\" and \"capres.\" It encompasses 490 positive, 355 negative, and 353 neutral sentiments, reflecting diverse opinions on presidential candidates and political issues. The enhanced model achieves 96.37% accuracy, with the backward selection model reaching 100% accuracy for negative sentiments. The study suggests further exploration of hybrid feature selection and improved classifiers for high-stakes sentiment analysis. With forward feature selection and ensemble method, Naive Bayes stands out for classifying negative sentiments while maintaining high overall accuracy (96.37%).","PeriodicalId":31716,"journal":{"name":"Telematika","volume":"150 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35671/telematika.v17i1.2824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing classification methods (forward selection, backward elimination, and optimized selection) and ensemble techniques (AdaBoost and Bagging) are essential for accurate sentiment analysis, particularly in political contexts on social media. This research compares advanced classification models with standard ones (Decision Tree, Random Tree, Naive Bayes, Random Forest, K- NN, Neural Network, and Generalized Linear Model), analyzing 1,200 tweets from December 10-11, 2023, focusing on "Indonesia" and "capres." It encompasses 490 positive, 355 negative, and 353 neutral sentiments, reflecting diverse opinions on presidential candidates and political issues. The enhanced model achieves 96.37% accuracy, with the backward selection model reaching 100% accuracy for negative sentiments. The study suggests further exploration of hybrid feature selection and improved classifiers for high-stakes sentiment analysis. With forward feature selection and ensemble method, Naive Bayes stands out for classifying negative sentiments while maintaining high overall accuracy (96.37%).
情感分析中分类方法的比较分析:特征选择和集合技术优化的影响
优化分类方法(前向选择、后向消除和优化选择)和集合技术(AdaBoost 和 Bagging)对于准确的情感分析至关重要,尤其是在社交媒体的政治背景下。本研究比较了高级分类模型和标准分类模型(决策树、随机树、奈夫贝叶斯、随机森林、K- NN、神经网络和广义线性模型),分析了 2023 年 12 月 10-11 日的 1200 条推文,重点关注 "印度尼西亚 "和 "capres"。其中包括 490 条正面情绪、355 条负面情绪和 353 条中性情绪,反映了人们对总统候选人和政治问题的不同看法。增强型模型的准确率达到 96.37%,其中后向选择模型对负面情绪的准确率达到 100%。该研究建议进一步探索混合特征选择和改进分类器,用于高风险情绪分析。通过前向特征选择和集合方法,Naive Bayes 在负面情绪分类方面表现突出,同时保持了较高的总体准确率(96.37%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信