Localized nodal solutions for semiclassical Choquard equations with critical growth

IF 0.8 4区 数学 Q2 MATHEMATICS
Bo-wen Zhang, Wei Zhang
{"title":"Localized nodal solutions for semiclassical Choquard equations with critical growth","authors":"Bo-wen Zhang, Wei Zhang","doi":"10.58997/ejde.2024.19","DOIUrl":null,"url":null,"abstract":"In this article, we study the existence of localized nodal solutions for semiclassical Choquard equation with critical growth $$ -\\epsilon^2 \\Delta v +V(x)v = \\epsilon^{\\alpha-N}\\Big(\\int_{R^N} \\frac{|v(y)|^{2_\\alpha^*}}{|x-y|^{\\alpha}}\\,dy\\Big) |v|^{2_\\alpha^*-2}v +\\theta|v|^{q-2}v,\\; x \\in R^N, $$ where \\(\\theta>0\\), \\(N\\geq 3\\), \\(0< \\alpha<\\min \\{4,N-1\\},\\max\\{2,2^*-1\\}< q< 2 ^*\\), \\(2_\\alpha^*= \\frac{2N-\\alpha}{N-2}\\), \\(V\\) is a bounded function. By the perturbation method and the method of invariant sets of descending flow, we establish for small \\(\\epsilon\\) the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function \\(V\\).\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/19/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.19","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the existence of localized nodal solutions for semiclassical Choquard equation with critical growth $$ -\epsilon^2 \Delta v +V(x)v = \epsilon^{\alpha-N}\Big(\int_{R^N} \frac{|v(y)|^{2_\alpha^*}}{|x-y|^{\alpha}}\,dy\Big) |v|^{2_\alpha^*-2}v +\theta|v|^{q-2}v,\; x \in R^N, $$ where \(\theta>0\), \(N\geq 3\), \(0< \alpha<\min \{4,N-1\},\max\{2,2^*-1\}< q< 2 ^*\), \(2_\alpha^*= \frac{2N-\alpha}{N-2}\), \(V\) is a bounded function. By the perturbation method and the method of invariant sets of descending flow, we establish for small \(\epsilon\) the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function \(V\). For more information see https://ejde.math.txstate.edu/Volumes/2024/19/abstr.html
具有临界增长的半经典乔夸德方程的局部节点解
本文研究了具有临界增长的半经典乔夸德方程局部节点解的存在性 $$ -\epsilon^2 \Delta v +V(x)v = \epsilon^{\alpha-N}\Big(\int_{R^N})\frac{|v(y)|^{2_\alpha^*}}{|x-y|^{\alpha}}\,dy\Big) |v|^{2_\alpha^*-2}v +\theta|v|^{q-2}v,\;x in R^N, $$ 其中(theta>0), (Ngeq 3\),\(0< \alpha<\min {4,N-1\},\max\{2,2^*-1\}< q< 2 ^*\),\(2_\alpha^*= \frac{2N-\alpha}{N-2}\),\(V\) 是一个有界函数。通过扰动法和降流不变集法,我们确定了对于小的\(\epsilon\),集中在势函数\(V\)的给定局部最小点附近的局部节点解序列的存在。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2024/19/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信