Exploring the Impact of TiO2 and MgO Nanoparticles on the Mechanical and Topographical Characteristics of Glass Fiber Reinforced Polymer (GFRP) Composites with Varied Lay-up Sequences: A Taguchi Analysis

Somaiah A, Anjaneya Prasad B, Kishore Nath N
{"title":"Exploring the Impact of TiO2 and MgO Nanoparticles on the Mechanical and Topographical Characteristics of Glass Fiber Reinforced Polymer (GFRP) Composites with Varied Lay-up Sequences: A Taguchi Analysis","authors":"Somaiah A, Anjaneya Prasad B, Kishore Nath N","doi":"10.54392/irjmt2426","DOIUrl":null,"url":null,"abstract":"A revolutionary composite material, blending Glass Fiber Reinforced Polymer (GFRP) with advanced nanofillers like TiO2 and MgO, showcases remarkable versatility in various industries due to its unique properties. The process involves precise control of key factors, including fiber stacking sequence (F.S.S) and nanofiller integration (MgO and TiO2). The vacuum bagging process is employed in the production of nanocomposite laminates. Experimental studies have been conducted to assess the performance of composites with and without nanofillers, with a specific focus on crucial mechanical properties, namely ultimate tensile strength (U.T.S), flexural strength (F.S), impact strength (I.S), and hardness (H). The Taguchi L9 orthogonal array design optimizes parameters and enhances mechanical properties. Comparisons reveal significant improvements with nanofillers, including a 31.96% increase in ultimate tensile strength and a substantial 68.43% enhancement in flexural strength. ANOVA results highlight the critical impact of fiber stacking sequence on ultimate tensile strength (63.65%), flexural strength (65.70%), and impact strength (9.30%), while nanofillers play a lesser role, contributing 11.71% to ultimate tensile strength, 2.66% to flexural strength, and 3.61% to impact strength. Notably, in composite hardness, nanofillers play a more significant role, contributing 39.22%, while the influence of fiber stacking sequence is lower at 3.29%.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"341 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A revolutionary composite material, blending Glass Fiber Reinforced Polymer (GFRP) with advanced nanofillers like TiO2 and MgO, showcases remarkable versatility in various industries due to its unique properties. The process involves precise control of key factors, including fiber stacking sequence (F.S.S) and nanofiller integration (MgO and TiO2). The vacuum bagging process is employed in the production of nanocomposite laminates. Experimental studies have been conducted to assess the performance of composites with and without nanofillers, with a specific focus on crucial mechanical properties, namely ultimate tensile strength (U.T.S), flexural strength (F.S), impact strength (I.S), and hardness (H). The Taguchi L9 orthogonal array design optimizes parameters and enhances mechanical properties. Comparisons reveal significant improvements with nanofillers, including a 31.96% increase in ultimate tensile strength and a substantial 68.43% enhancement in flexural strength. ANOVA results highlight the critical impact of fiber stacking sequence on ultimate tensile strength (63.65%), flexural strength (65.70%), and impact strength (9.30%), while nanofillers play a lesser role, contributing 11.71% to ultimate tensile strength, 2.66% to flexural strength, and 3.61% to impact strength. Notably, in composite hardness, nanofillers play a more significant role, contributing 39.22%, while the influence of fiber stacking sequence is lower at 3.29%.
探索 TiO2 和 MgO 纳米粒子对不同铺层顺序的玻璃纤维增强聚合物 (GFRP) 复合材料的力学和形貌特征的影响:田口分析
玻璃纤维增强聚合物(GFRP)与二氧化钛(TiO2)和氧化镁(MgO)等先进的纳米填料混合而成的革命性复合材料,因其独特的性能而在各行各业展现出显著的多功能性。该工艺涉及对关键因素的精确控制,包括纤维堆叠顺序(F.S.S)和纳米填料集成(氧化镁和二氧化钛)。纳米复合材料层压板的生产采用了真空装袋工艺。实验研究评估了有纳米填料和无纳米填料复合材料的性能,重点关注关键的机械性能,即极限拉伸强度(U.T.S)、抗弯强度(F.S)、冲击强度(I.S)和硬度(H)。田口 L9 正交阵列设计优化了参数,提高了机械性能。比较结果显示,使用纳米填料后,材料的机械性能有了显著提高,包括极限拉伸强度提高了 31.96%,抗弯强度大幅提高了 68.43%。方差分析结果凸显了纤维堆叠顺序对极限拉伸强度(63.65%)、弯曲强度(65.70%)和冲击强度(9.30%)的关键影响,而纳米填料的作用较小,对极限拉伸强度的贡献为 11.71%,对弯曲强度的贡献为 2.66%,对冲击强度的贡献为 3.61%。值得注意的是,在复合材料硬度方面,纳米填料的作用更大,占 39.22%,而纤维堆叠顺序的影响较小,仅占 3.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信