{"title":"Existence of high energy solutions for superlinear coupled Klein-Gordons and Born-Infeld equations","authors":"Lixia Wang, Pingping Zhao, Dong Zhang","doi":"10.58997/ejde.2024.18","DOIUrl":null,"url":null,"abstract":"In this article, we study the system of Klein-Gordon and Born-Infeld equations $$\\displaylines{ -\\Delta u +V(x)u-(2\\omega+\\phi)\\phi u =f(x,u), \\quad x\\in \\mathbb{R}^3,\\cr \\Delta \\phi+\\beta\\Delta_4\\phi=4\\pi(\\omega+\\phi)u^2, \\quad x\\in \\mathbb{R}^3, }$$ where \\(\\Delta_4\\phi=\\hbox{div}(|\\nabla\\phi|^2\\nabla\\phi)$\\), \\(\\omega\\) is a positive constant. Assuming that the primitive of \\(f(x,u)\\) is of 2-superlinear growth in \\(u\\) at infinity, we prove the existence of multiple solutions using the fountain theorem. Here the potential \\(V\\) are allowed to be a sign-changing function.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/18/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":"313 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we study the system of Klein-Gordon and Born-Infeld equations $$\displaylines{ -\Delta u +V(x)u-(2\omega+\phi)\phi u =f(x,u), \quad x\in \mathbb{R}^3,\cr \Delta \phi+\beta\Delta_4\phi=4\pi(\omega+\phi)u^2, \quad x\in \mathbb{R}^3, }$$ where \(\Delta_4\phi=\hbox{div}(|\nabla\phi|^2\nabla\phi)$\), \(\omega\) is a positive constant. Assuming that the primitive of \(f(x,u)\) is of 2-superlinear growth in \(u\) at infinity, we prove the existence of multiple solutions using the fountain theorem. Here the potential \(V\) are allowed to be a sign-changing function.
For more information see https://ejde.math.txstate.edu/Volumes/2024/18/abstr.html