Existence of high energy solutions for superlinear coupled Klein-Gordons and Born-Infeld equations

IF 0.8 4区 数学 Q2 MATHEMATICS
Lixia Wang, Pingping Zhao, Dong Zhang
{"title":"Existence of high energy solutions for superlinear coupled Klein-Gordons and Born-Infeld equations","authors":"Lixia Wang, Pingping Zhao, Dong Zhang","doi":"10.58997/ejde.2024.18","DOIUrl":null,"url":null,"abstract":"In this article, we study the system of Klein-Gordon and Born-Infeld equations $$\\displaylines{ -\\Delta u +V(x)u-(2\\omega+\\phi)\\phi u =f(x,u), \\quad x\\in \\mathbb{R}^3,\\cr \\Delta \\phi+\\beta\\Delta_4\\phi=4\\pi(\\omega+\\phi)u^2, \\quad x\\in \\mathbb{R}^3, }$$ where \\(\\Delta_4\\phi=\\hbox{div}(|\\nabla\\phi|^2\\nabla\\phi)$\\), \\(\\omega\\) is a positive constant. Assuming that the primitive of \\(f(x,u)\\) is of 2-superlinear growth in \\(u\\) at infinity, we prove the existence of multiple solutions using the fountain theorem. Here the potential \\(V\\) are allowed to be a sign-changing function.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/18/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.18","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the system of Klein-Gordon and Born-Infeld equations $$\displaylines{ -\Delta u +V(x)u-(2\omega+\phi)\phi u =f(x,u), \quad x\in \mathbb{R}^3,\cr \Delta \phi+\beta\Delta_4\phi=4\pi(\omega+\phi)u^2, \quad x\in \mathbb{R}^3, }$$ where \(\Delta_4\phi=\hbox{div}(|\nabla\phi|^2\nabla\phi)$\), \(\omega\) is a positive constant. Assuming that the primitive of \(f(x,u)\) is of 2-superlinear growth in \(u\) at infinity, we prove the existence of multiple solutions using the fountain theorem. Here the potential \(V\) are allowed to be a sign-changing function. For more information see https://ejde.math.txstate.edu/Volumes/2024/18/abstr.html
超线性耦合克莱因-戈登方程和博恩-因费尔德方程的高能解的存在性
在本文中,我们研究了克莱因-戈登方程和玻恩-因费尔德方程系统 $$displaylines{ -\Delta u +V(x)u-(2\omega+\phi)\phi u =f(x,u), \quad x\in \mathbb{R}^3、\cr \Delta \phi+\beta\Delta_4\phi=4\pi(\omega+\phi)u^2, \quad x\in \mathbb{R}^3, }$$ 其中 \(\Delta_4\phi=\hbox{div}(|\nabla\phi|^2\nabla\phi)$\), \(\omega\) 是一个正常数。假定 \(f(x,u)\)的基元在无穷大时在\(u\)中呈2-超线性增长,我们用喷泉定理证明多解的存在。这里的势\(V\) 允许是符号变化函数。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2024/18/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信