{"title":"Seer: Predictive Runtime Kernel Selection for Irregular Problems","authors":"Leon Frenot, Fernando Magno Quintão Pereira","doi":"10.1109/CGO57630.2024.10444812","DOIUrl":null,"url":null,"abstract":"Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the best kernel to map fine-grained irregular parallelism to a GPU. We instead propose Seer, an abstraction for producing a simple, reproduceable, and understandable decision tree selector model which performs runtime kernel selection for irregular workloads. To showcase our framework, we conduct a case study in Sparse Matrix Vector Multiplication (SpMV), in which Seer predicts the best strategy for a given dataset with an improvement of 2× over the best single iteration kernel across the entire SuiteSparse Matrix Collection dataset.","PeriodicalId":517814,"journal":{"name":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","volume":"60 13","pages":"133-142"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO57630.2024.10444812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the best kernel to map fine-grained irregular parallelism to a GPU. We instead propose Seer, an abstraction for producing a simple, reproduceable, and understandable decision tree selector model which performs runtime kernel selection for irregular workloads. To showcase our framework, we conduct a case study in Sparse Matrix Vector Multiplication (SpMV), in which Seer predicts the best strategy for a given dataset with an improvement of 2× over the best single iteration kernel across the entire SuiteSparse Matrix Collection dataset.