Seer: Predictive Runtime Kernel Selection for Irregular Problems

Leon Frenot, Fernando Magno Quintão Pereira
{"title":"Seer: Predictive Runtime Kernel Selection for Irregular Problems","authors":"Leon Frenot, Fernando Magno Quintão Pereira","doi":"10.1109/CGO57630.2024.10444812","DOIUrl":null,"url":null,"abstract":"Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the best kernel to map fine-grained irregular parallelism to a GPU. We instead propose Seer, an abstraction for producing a simple, reproduceable, and understandable decision tree selector model which performs runtime kernel selection for irregular workloads. To showcase our framework, we conduct a case study in Sparse Matrix Vector Multiplication (SpMV), in which Seer predicts the best strategy for a given dataset with an improvement of 2× over the best single iteration kernel across the entire SuiteSparse Matrix Collection dataset.","PeriodicalId":517814,"journal":{"name":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","volume":"60 13","pages":"133-142"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO57630.2024.10444812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the best kernel to map fine-grained irregular parallelism to a GPU. We instead propose Seer, an abstraction for producing a simple, reproduceable, and understandable decision tree selector model which performs runtime kernel selection for irregular workloads. To showcase our framework, we conduct a case study in Sparse Matrix Vector Multiplication (SpMV), in which Seer predicts the best strategy for a given dataset with an improvement of 2× over the best single iteration kernel across the entire SuiteSparse Matrix Collection dataset.
Seer:针对不规则问题的预测性运行时内核选择
现代 GPU 专为常规问题而设计,在处理不规则数据时会出现负载不平衡的问题。在我们的工作之前,由领域专家选择最佳内核,将细粒度的不规则并行性映射到 GPU 上。相反,我们提出了一个抽象概念--Seer,用于生成一个简单、可重现、可理解的决策树选择器模型,为不规则工作负载执行运行时内核选择。为了展示我们的框架,我们在稀疏矩阵矢量乘法(SpMV)中进行了一项案例研究,其中 Seer 预测了特定数据集的最佳策略,比整个 SuiteSparse Matrix Collection 数据集的最佳单次迭代内核提高了 2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信