Qualitative Properties of the Solution of a Conjugate Problem of Thermal Convection

A. A. Azanov, E. Lemeshkova
{"title":"Qualitative Properties of the Solution of a Conjugate Problem of Thermal Convection","authors":"A. A. Azanov, E. Lemeshkova","doi":"10.26907/2541-7746.2023.4.326-343","DOIUrl":null,"url":null,"abstract":"The joint convection of two viscous heat-conducting liquids in a three-dimensional layer bounded by flat solid walls was studied. The upper wall is thermally insulated, and the lower wall has a non-stationary temperature field. The liquids are immiscible and separated by a flat interface with complex conjugation conditions set on it. The evolution of this system in each liquid was described by the Oberbeck–Boussinesq equations. The solution of the problem was sought for velocities that are linear in two coordinates and temperature fields that are quadratic functions of the same coordinates. Thus, the problem was reduced to a system of 10 nonlinear integro-differential equations. Its conjugate and inverse nature is determined by the four functions of time. Integral redefinition conditions were set to find them. The physical meaning of the integral conditions is the closeness of the flow. The inverse initial-boundary value problem describes convection near the temperature extremum point on the lower solid wall in a two-layer system. For small Marangoni numbers, the problem was approximated linearly (the Marangoni number is analogous to the Reynolds number in the Navier–Stokes equations). Using the obtained a priori estimates, sufficient conditions were identified for the non-stationary solution to become a stationary one over time.","PeriodicalId":516762,"journal":{"name":"Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki","volume":"42 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/2541-7746.2023.4.326-343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The joint convection of two viscous heat-conducting liquids in a three-dimensional layer bounded by flat solid walls was studied. The upper wall is thermally insulated, and the lower wall has a non-stationary temperature field. The liquids are immiscible and separated by a flat interface with complex conjugation conditions set on it. The evolution of this system in each liquid was described by the Oberbeck–Boussinesq equations. The solution of the problem was sought for velocities that are linear in two coordinates and temperature fields that are quadratic functions of the same coordinates. Thus, the problem was reduced to a system of 10 nonlinear integro-differential equations. Its conjugate and inverse nature is determined by the four functions of time. Integral redefinition conditions were set to find them. The physical meaning of the integral conditions is the closeness of the flow. The inverse initial-boundary value problem describes convection near the temperature extremum point on the lower solid wall in a two-layer system. For small Marangoni numbers, the problem was approximated linearly (the Marangoni number is analogous to the Reynolds number in the Navier–Stokes equations). Using the obtained a priori estimates, sufficient conditions were identified for the non-stationary solution to become a stationary one over time.
热对流共轭问题解法的定性特性
研究了在以平面实体墙为边界的三维层中两种粘性导热液体的联合对流。上壁为隔热壁,下壁为非稳态温度场。液体互不相溶,被一个平面界面隔开,界面上设置了复杂的共轭条件。该系统在每种液体中的演化由 Oberbeck-Boussinesq 方程描述。该问题的解法适用于两个坐标的线性速度和同一坐标的二次函数温度场。因此,该问题被简化为由 10 个非线性积分微分方程组成的系统。其共轭和逆性质由四个时间函数决定。为了找到它们,设定了积分重新定义条件。积分条件的物理意义在于流动的紧密性。逆初始边界值问题描述的是双层系统中固体下壁温度极值点附近的对流。对于较小的马兰戈尼数,问题被线性近似(马兰戈尼数类似于纳维-斯托克斯方程中的雷诺数)。利用获得的先验估计值,确定了非稳态解随时间变化成为稳态解的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信