An Algorithm for Solving Quadratic Programming Problems with an M-matrix

Katia Hassaini, Mohand Ouamer Bibi
{"title":"An Algorithm for Solving Quadratic Programming Problems with an M-matrix","authors":"Katia Hassaini, Mohand Ouamer Bibi","doi":"10.19139/soic-2310-5070-1399","DOIUrl":null,"url":null,"abstract":"In this study, we propose an approach for solving a quadraticprogramming problem with an M-matrix and simple constraints (QPs). It isbased on the algorithms of Luk-Pagano and Stachurski. These methods usethe fact that an M-matrix possesses a nonnegative inverse which allows tohave a sequence of feasible points monotonically increasing. Introducing theconcept of support for an objective function developed by Gabasov et al., ourapproach leads to a more general condition which allows to have an initialfeasible solution, related to a coordinator support and close to the optimalsolution. The programming under MATLAB of our method and that of Lukand Pagano has allowed us to make a comparison between them, with anillustration on two numerical examples.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"205 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose an approach for solving a quadraticprogramming problem with an M-matrix and simple constraints (QPs). It isbased on the algorithms of Luk-Pagano and Stachurski. These methods usethe fact that an M-matrix possesses a nonnegative inverse which allows tohave a sequence of feasible points monotonically increasing. Introducing theconcept of support for an objective function developed by Gabasov et al., ourapproach leads to a more general condition which allows to have an initialfeasible solution, related to a coordinator support and close to the optimalsolution. The programming under MATLAB of our method and that of Lukand Pagano has allowed us to make a comparison between them, with anillustration on two numerical examples.
用 M 矩阵求解二次编程问题的算法
在本研究中,我们提出了一种解决具有 M 矩阵和简单约束条件(QPs)的二次编程问题的方法。该方法基于 Luk-Pagano 和 Stachurski 的算法。这些方法利用了一个事实,即 M 矩阵具有一个非负倒数,它允许可行点序列单调递增。通过引入 Gabasov 等人提出的目标函数支持概念,我们的方法得出了一个更普遍的条件,即允许有一个与协调支持相关且接近最优解的初始可行解。通过在 MATLAB 中对我们的方法和 Lukand Pagano 的方法进行编程,我们可以对它们进行比较,并通过两个数值示例进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信