System of Smart Home Based on Speech Recognition with Machine Learning

Baihua Li
{"title":"System of Smart Home Based on Speech Recognition with Machine Learning","authors":"Baihua Li","doi":"10.56028/aetr.9.1.796.2024","DOIUrl":null,"url":null,"abstract":"This article designs and implements a system of smart home based on speech recognition with machine learning and Android. The STM32 microcontroller is combined with actuating components to control home devices by obtaining server control commands through the network. This article designs a smart home APP based on Android and Google Voice Search, optimizes the speech recognition algorithm by using the training results from Word2Vector model to improve the recall rate of the speech recognition of command samples. This APP displays environmental data according to the scenario for users, such as the temperature, humidity, and alert of smoke gas. The test results show that the recognition recall rate of the test data of control commands from users of different ages is increased to 94.4% with high stability. ","PeriodicalId":355471,"journal":{"name":"Advances in Engineering Technology Research","volume":"20 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/aetr.9.1.796.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article designs and implements a system of smart home based on speech recognition with machine learning and Android. The STM32 microcontroller is combined with actuating components to control home devices by obtaining server control commands through the network. This article designs a smart home APP based on Android and Google Voice Search, optimizes the speech recognition algorithm by using the training results from Word2Vector model to improve the recall rate of the speech recognition of command samples. This APP displays environmental data according to the scenario for users, such as the temperature, humidity, and alert of smoke gas. The test results show that the recognition recall rate of the test data of control commands from users of different ages is increased to 94.4% with high stability. 
基于机器学习语音识别的智能家居系统
本文设计并实现了一个基于机器学习语音识别和安卓系统的智能家居系统。STM32 微控制器与执行元件相结合,通过网络获取服务器控制指令来控制家居设备。本文设计了一款基于 Android 和谷歌语音搜索的智能家居 APP,利用 Word2Vector 模型的训练结果优化了语音识别算法,提高了命令样本的语音识别召回率。该 APP 根据用户使用场景显示环境数据,如温度、湿度、烟雾气体警报等。测试结果表明,来自不同年龄段用户的控制指令测试数据的识别召回率提高到了 94.4%,且具有很高的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信