Nonparametric Kernel Smoothing Item Response Theory Analysis of Likert Items

Psych Pub Date : 2024-02-19 DOI:10.3390/psych6010015
Purya Baghaei, Farshad Effatpanah
{"title":"Nonparametric Kernel Smoothing Item Response Theory Analysis of Likert Items","authors":"Purya Baghaei, Farshad Effatpanah","doi":"10.3390/psych6010015","DOIUrl":null,"url":null,"abstract":"Likert scales are the most common psychometric response scales in the social and behavioral sciences. Likert items are typically used to measure individuals’ attitudes, perceptions, knowledge, and behavioral changes. To analyze the psychometric properties of individual Likert-type items and overall Likert scales, mostly methods based on classical test theory (CTT) are used, including corrected item–total correlations and reliability indices. CTT methods heavily rely on the total scale scores, making it challenging to directly examine the performance of items and response options across varying levels of the trait. In this study, Kernel Smoothing Item Response Theory (KS-IRT) is introduced as a graphical nonparametric IRT approach for the evaluation of Likert items. Unlike parametric IRT models, nonparametric IRT models do not involve strong assumptions regarding the form of item response functions (IRFs). KS-IRT provides graphics for detecting peculiar patterns in items across different levels of a latent trait. Differential item functioning (DIF) can also be examined by applying KS-IRT. Using empirical data, we illustrate the application of KS-IRT to the examination of Likert items on a psychological scale.","PeriodicalId":510411,"journal":{"name":"Psych","volume":"26 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych6010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Likert scales are the most common psychometric response scales in the social and behavioral sciences. Likert items are typically used to measure individuals’ attitudes, perceptions, knowledge, and behavioral changes. To analyze the psychometric properties of individual Likert-type items and overall Likert scales, mostly methods based on classical test theory (CTT) are used, including corrected item–total correlations and reliability indices. CTT methods heavily rely on the total scale scores, making it challenging to directly examine the performance of items and response options across varying levels of the trait. In this study, Kernel Smoothing Item Response Theory (KS-IRT) is introduced as a graphical nonparametric IRT approach for the evaluation of Likert items. Unlike parametric IRT models, nonparametric IRT models do not involve strong assumptions regarding the form of item response functions (IRFs). KS-IRT provides graphics for detecting peculiar patterns in items across different levels of a latent trait. Differential item functioning (DIF) can also be examined by applying KS-IRT. Using empirical data, we illustrate the application of KS-IRT to the examination of Likert items on a psychological scale.
李克特项目的非参数核平滑项目反应理论分析
李克特量表是社会和行为科学中最常见的心理测量反应量表。李克特项目通常用于测量个人的态度、认知、知识和行为变化。为了分析单个李克特类型项目和整体李克特量表的心理测量特性,大多采用基于经典测验理论(CTT)的方法,包括校正项目总相关和信度指数。CTT 方法在很大程度上依赖于量表总分,因此直接考察不同特质水平的项目和回答选项的表现具有挑战性。本研究引入了核平滑项目反应理论(KS-IRT),作为评估李克特项目的图形化非参数 IRT 方法。与参数 IRT 模型不同,非参数 IRT 模型不涉及有关项目反应函数(IRF)形式的强烈假设。KS-IRT 提供的图形可用于检测项目在潜在特质不同水平上的特殊模式。差异项目功能(DIF)也可以通过应用 KS-IRT 进行检验。我们使用经验数据说明了 KS-IRT 在检查心理量表中的李克特项目时的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信