Periodic orbits in the thin part of strata

Ursula Hamenstädt
{"title":"Periodic orbits in the thin part of strata","authors":"Ursula Hamenstädt","doi":"10.1515/crelle-2023-0102","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let <jats:italic>S</jats:italic> be a closed oriented surface of\ngenus <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>g</m:mi>\n <m:mo>≥</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0733.png\" />\n <jats:tex-math>{g\\geq 0}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> with <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>n</m:mi>\n <m:mo>≥</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0798.png\" />\n <jats:tex-math>{n\\geq 0}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> punctures and\n<jats:inline-formula id=\"j_crelle-2023-0102_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mrow>\n <m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n <m:mo>⁢</m:mo>\n <m:mi>g</m:mi>\n </m:mrow>\n <m:mo>-</m:mo>\n <m:mn>3</m:mn>\n </m:mrow>\n <m:mo>+</m:mo>\n <m:mi>n</m:mi>\n </m:mrow>\n <m:mo>≥</m:mo>\n <m:mn>5</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0143.png\" />\n <jats:tex-math>{3g-3+n\\geq 5}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.\nLet <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9996\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi mathvariant=\"script\">𝒬</m:mi>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0945.png\" />\n <jats:tex-math>{{\\mathcal{Q}}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> be a connected component\nof a stratum in the moduli space <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9995\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi mathvariant=\"script\">𝒬</m:mi>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>S</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0930.png\" />\n <jats:tex-math>{{\\mathcal{Q}}(S)}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\nof area one\nmeromorphic quadratic differentials on <jats:italic>S</jats:italic> with <jats:italic>n</jats:italic>\nsimple poles at the punctures\nor in the moduli space <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9994\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi mathvariant=\"script\">ℋ</m:mi>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>S</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0903.png\" />\n <jats:tex-math>{{\\mathcal{H}}(S)}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>\nof abelian differentials on <jats:italic>S</jats:italic> if <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9993\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>n</m:mi>\n <m:mo>=</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0794.png\" />\n <jats:tex-math>{n=0}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.\nFor a compact subset <jats:italic>K</jats:italic> of <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9992\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi mathvariant=\"script\">𝒬</m:mi>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>S</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0930.png\" />\n <jats:tex-math>{{\\mathcal{Q}}(S)}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> or of <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9991\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi mathvariant=\"script\">ℋ</m:mi>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>S</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0903.png\" />\n <jats:tex-math>{{\\mathcal{H}}(S)}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>,\nwe show that the asymptotic growth rate of the number of periodic orbits for the\nTeichmüller flow <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9990\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi mathvariant=\"normal\">Φ</m:mi>\n <m:mi>t</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0314.png\" />\n <jats:tex-math>{\\Phi^{t}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> on <jats:inline-formula id=\"j_crelle-2023-0102_ineq_9989\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi mathvariant=\"script\">𝒬</m:mi>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2023-0102_eq_0945.png\" />\n <jats:tex-math>{{\\mathcal{Q}}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> which are entirely contained in\n<jats:inline-formula id=\"j_crelle-2023-0102_ineq_9988\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi mathvariant=\"script\">𝒬</m:mi>\n <m:mo>-</m:mo>\n <m:mi>K</m:mi>\n ","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"37 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a closed oriented surface of genus g 0 {g\geq 0} with n 0 {n\geq 0} punctures and 3 g - 3 + n 5 {3g-3+n\geq 5} . Let 𝒬 {{\mathcal{Q}}} be a connected component of a stratum in the moduli space 𝒬 ( S ) {{\mathcal{Q}}(S)} of area one meromorphic quadratic differentials on S with n simple poles at the punctures or in the moduli space ( S ) {{\mathcal{H}}(S)} of abelian differentials on S if n = 0 {n=0} . For a compact subset K of 𝒬 ( S ) {{\mathcal{Q}}(S)} or of ( S ) {{\mathcal{H}}(S)} , we show that the asymptotic growth rate of the number of periodic orbits for the Teichmüller flow Φ t {\Phi^{t}} on 𝒬 {{\mathcal{Q}}} which are entirely contained in 𝒬 - K
地层薄层中的周期轨道
Let S be a closed oriented surface ofgenus g ≥ 0 {g\geq 0} with n ≥ 0 {n\geq 0} punctures and 3 ⁢ g - 3 + n ≥ 5 {3g-3+n\geq 5} .Let 𝒬 {{\mathcal{Q}}} be a connected componentof a stratum in the moduli space 𝒬 ⁢ ( S ) {{\mathcal{Q}}(S)} of area onemeromorphic quadratic differentials on S with nsimple poles at the puncturesor in the moduli space ℋ ⁢ ( S ) {{\mathcal{H}}(S)} of abelian differentials on S if n = 0 {n=0} .For a compact subset K of 𝒬 ⁢ ( S ) {{\mathcal{Q}}(S)} or of ℋ ⁢ ( S ) {{\mathcal{H}}(S)} ,we show that the asymptotic growth rate of the number of periodic orbits for theTeichmüller flow Φ t {\Phi^{t}} on 𝒬 {{\mathcal{Q}}} which are entirely contained in 𝒬 - K
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信