Development of Brain MRI Image Segmentation program using UNET++ network for radiosurgery planning

Bui Ha, Tuấn Kiên Nguyễn, Dương Trần, Ngọc Toàn Trần, Quang Tuấn Hồ, Thu Trang Vũ
{"title":"Development of Brain MRI Image Segmentation program using UNET++ network for radiosurgery planning","authors":"Bui Ha, Tuấn Kiên Nguyễn, Dương Trần, Ngọc Toàn Trần, Quang Tuấn Hồ, Thu Trang Vũ","doi":"10.53747/nst.v13i1.398","DOIUrl":null,"url":null,"abstract":"Image processing is one of the most important and widely used techniques in the medical field. Magnetic Resonance Imaging (MRI) can provide diagnostic images with high contrast and high resolution, especially for low-density tissue. Therefore, applications to support tumor prediction are researched and developed. In this paper, we use applied artificial intelligence to identify and detect tumors using the UNET ++ deep learning model, which achieved results with a recognition rate of about 80%. The results for a great deal of built-in functionality in the built-in physician support software system in practice.","PeriodicalId":19445,"journal":{"name":"Nuclear Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53747/nst.v13i1.398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image processing is one of the most important and widely used techniques in the medical field. Magnetic Resonance Imaging (MRI) can provide diagnostic images with high contrast and high resolution, especially for low-density tissue. Therefore, applications to support tumor prediction are researched and developed. In this paper, we use applied artificial intelligence to identify and detect tumors using the UNET ++ deep learning model, which achieved results with a recognition rate of about 80%. The results for a great deal of built-in functionality in the built-in physician support software system in practice.
利用 UNET++ 网络开发脑磁共振成像图像分割程序,用于放射外科手术规划
图像处理是医学领域最重要、应用最广泛的技术之一。磁共振成像(MRI)可提供高对比度和高分辨率的诊断图像,特别是针对低密度组织。因此,支持肿瘤预测的应用得到了研究和开发。本文使用 UNET ++ 深度学习模型,利用应用人工智能识别和检测肿瘤,取得了识别率约为 80% 的成果。该结果为内置的医生支持软件系统在实践中提供了大量的内置功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信