ConvStencil: Transform Stencil Computation to Matrix Multiplication on Tensor Cores

Yuetao Chen, Kun Li, Yuhao Wang, Donglin Bai, Lei Wang, Lingxiao Ma, Liang Yuan, Yunquan Zhang, Ting Cao, Mao Yang
{"title":"ConvStencil: Transform Stencil Computation to Matrix Multiplication on Tensor Cores","authors":"Yuetao Chen, Kun Li, Yuhao Wang, Donglin Bai, Lei Wang, Lingxiao Ma, Liang Yuan, Yunquan Zhang, Ting Cao, Mao Yang","doi":"10.1145/3627535.3638476","DOIUrl":null,"url":null,"abstract":"Tensor Core Unit (TCU) is increasingly integrated into modern high-performance processors to enhance matrix multiplication performance. However, constrained to its over-specification, its potential for improving other critical scientific operations like stencil computations remains untapped. This paper presents ConvStencil 1 , a novel stencil computing system designed to efficiently transform stencil computation to matrix multiplication on Tensor Cores. We first develop a performance model for ConvStencil to guide al-gorithm design and optimization on TCUs. Based on this model, we propose three techniques: (1) Memory-efficient Layout Transformation using the stencil2row method; (2)","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"485 ","pages":"333-347"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627535.3638476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor Core Unit (TCU) is increasingly integrated into modern high-performance processors to enhance matrix multiplication performance. However, constrained to its over-specification, its potential for improving other critical scientific operations like stencil computations remains untapped. This paper presents ConvStencil 1 , a novel stencil computing system designed to efficiently transform stencil computation to matrix multiplication on Tensor Cores. We first develop a performance model for ConvStencil to guide al-gorithm design and optimization on TCUs. Based on this model, we propose three techniques: (1) Memory-efficient Layout Transformation using the stencil2row method; (2)
ConvStencil:将模板计算转换为张量核上的矩阵乘法
张量核心单元(TCU)越来越多地被集成到现代高性能处理器中,以提高矩阵乘法性能。然而,受限于其规格过高,它在改进模版计算等其他关键科学运算方面的潜力仍未得到开发。本文介绍的 ConvStencil 1 是一种新型模版计算系统,旨在将模版计算高效地转换为张量核上的矩阵乘法。我们首先为 ConvStencil 建立了一个性能模型,以指导 TCU 上的算法设计和优化。基于该模型,我们提出了三种技术:(1) 使用 stencil2row 方法进行内存高效布局转换;(2) 在 Tensor Cores 上进行矩阵乘法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信