GlórIA: A Generative and Open Large Language Model for Portuguese

Ricardo Lopes, João Magalhães, David Semedo
{"title":"GlórIA: A Generative and Open Large Language Model for Portuguese","authors":"Ricardo Lopes, João Magalhães, David Semedo","doi":"10.48550/arXiv.2402.12969","DOIUrl":null,"url":null,"abstract":"Significant strides have been made in natural language tasks, largely attributed to the emergence of powerful large language models (LLMs). These models, pre-trained on extensive and diverse corpora, have become increasingly capable of comprehending the intricacies of language. Despite the abundance of LLMs for many high-resource languages, the availability of such models remains limited for European Portuguese. We introduce Gl\\'orIA, a robust European Portuguese decoder LLM. To pre-train Gl\\'orIA, we assembled a comprehensive PT-PT text corpus comprising 35 billion tokens from various sources. We present our pre-training methodology, followed by an assessment of the model's effectiveness on multiple downstream tasks. Additionally, to evaluate our models' language modeling capabilities, we introduce CALAME-PT (Context-Aware LAnguage Modeling Evaluation for Portuguese), the first Portuguese zero-shot language-modeling benchmark. Evaluation shows that Gl\\'orIA significantly outperforms existing open PT decoder models in language modeling and that it can generate sound, knowledge-rich, and coherent PT-PT text. The model also exhibits strong potential for various downstream tasks.","PeriodicalId":291757,"journal":{"name":"International Conference on Computational Processing of the Portuguese Language","volume":"85 7","pages":"441-453"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computational Processing of the Portuguese Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.12969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Significant strides have been made in natural language tasks, largely attributed to the emergence of powerful large language models (LLMs). These models, pre-trained on extensive and diverse corpora, have become increasingly capable of comprehending the intricacies of language. Despite the abundance of LLMs for many high-resource languages, the availability of such models remains limited for European Portuguese. We introduce Gl\'orIA, a robust European Portuguese decoder LLM. To pre-train Gl\'orIA, we assembled a comprehensive PT-PT text corpus comprising 35 billion tokens from various sources. We present our pre-training methodology, followed by an assessment of the model's effectiveness on multiple downstream tasks. Additionally, to evaluate our models' language modeling capabilities, we introduce CALAME-PT (Context-Aware LAnguage Modeling Evaluation for Portuguese), the first Portuguese zero-shot language-modeling benchmark. Evaluation shows that Gl\'orIA significantly outperforms existing open PT decoder models in language modeling and that it can generate sound, knowledge-rich, and coherent PT-PT text. The model also exhibits strong potential for various downstream tasks.
GlórIA:葡萄牙语的生成和开放式大型语言模型
自然语言任务取得了长足进步,这主要归功于功能强大的大型语言模型(LLM)的出现。这些模型在广泛而多样的语料库中经过预先训练,理解语言复杂性的能力越来越强。尽管许多高资源语言都有大量的 LLM,但对于欧洲葡萄牙语来说,此类模型的可用性仍然有限。我们介绍了一种强大的欧洲葡萄牙语解码器 LLM--Gl\'orIA。为了对 Gl\'orIA 进行预训练,我们建立了一个全面的 PT-PT 文本语料库,该语料库由来自不同来源的 350 亿个词块组成。我们介绍了预训练方法,随后评估了模型在多个下游任务中的有效性。此外,为了评估我们的模型的语言建模能力,我们引入了 CALAME-PT(葡萄牙语语境感知语言建模评估),这是首个葡萄牙语零点语言建模基准。评估结果表明,Gl\'orIA 在语言建模方面明显优于现有的开放式葡萄牙语解码器模型,它可以生成完善、知识丰富和连贯的葡萄牙语 PT-PT 文本。该模型在各种下游任务中也表现出强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信