Simulation of Fractional Order 2D-Mathematical Model Using α-Fractional Differential Transform Method

S. N. Thorat, K. P. Ghadle, R. Muneshwar
{"title":"Simulation of Fractional Order 2D-Mathematical Model Using α-Fractional Differential Transform Method","authors":"S. N. Thorat, K. P. Ghadle, R. Muneshwar","doi":"10.37256/cm.5120242464","DOIUrl":null,"url":null,"abstract":"In this paper, we will introduce a well-known transformation technique, the modified α-fractional differential transform, to the differential equation of fractional order. We derive some new results with proof using new techniques that never existed before. By using this new technique, we are attempting to solve the nonlinear fractional-order mathematical epidemic model. Furthermore, the fractional epidemic model’s solution obtained by using this new technique is correlated with the solution of the same model calculated for a different fractional order by the modified α-fractional differential transform method. Moreover, using the Python software, we can numerically and graphically represent the solution of fractional differential equations.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120242464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we will introduce a well-known transformation technique, the modified α-fractional differential transform, to the differential equation of fractional order. We derive some new results with proof using new techniques that never existed before. By using this new technique, we are attempting to solve the nonlinear fractional-order mathematical epidemic model. Furthermore, the fractional epidemic model’s solution obtained by using this new technique is correlated with the solution of the same model calculated for a different fractional order by the modified α-fractional differential transform method. Moreover, using the Python software, we can numerically and graphically represent the solution of fractional differential equations.
利用α-分数微分变换方法模拟分数阶二维数学模型
本文将为分数阶微分方程引入一种著名的变换技术--修正的α-分数微分变换。我们利用以前从未有过的新技术推导出一些新结果,并进行了证明。通过使用这一新技术,我们正试图求解非线性分数阶数学流行病模型。此外,利用这一新技术求得的分数阶流行病模型解与用修正的 α 分数微分变换方法计算的不同分数阶同一模型的解具有相关性。此外,利用 Python 软件,我们可以用数值和图形表示分数微分方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信