Discrimination of Plant Structures in 3D Point Cloud Through Back-Projection of Labels Derived from 2D Semantic Segmentation

Takashi Imabuchi, Kuniaki Kawabata
{"title":"Discrimination of Plant Structures in 3D Point Cloud Through Back-Projection of Labels Derived from 2D Semantic Segmentation","authors":"Takashi Imabuchi, Kuniaki Kawabata","doi":"10.20965/jrm.2024.p0063","DOIUrl":null,"url":null,"abstract":"In the decommissioning of the Fukushima Daiichi Nuclear Power Station, radiation dose calculations necessitate a 3D model of the workspace are performed to determine suitable measures for reducing exposure. However, the construction of a 3D model from a 3D point cloud is a costly endeavor. To separate the geometrical shape regions on 3D point cloud, we are developing a structure discrimination method using 3D and 2D deep learning to contribute to the advancement of 3D modeling automation technology. In this paper, we present a method for transferring and fusing labels to handle 2D prediction labels in 3D space. We propose an exhaustive label fusion method designed for plant facilities with intricate structures. Through evaluation on a mock-up plant dataset, we confirmed the method’s effective performance.","PeriodicalId":178614,"journal":{"name":"J. Robotics Mechatronics","volume":"47 1","pages":"63-70"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2024.p0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the decommissioning of the Fukushima Daiichi Nuclear Power Station, radiation dose calculations necessitate a 3D model of the workspace are performed to determine suitable measures for reducing exposure. However, the construction of a 3D model from a 3D point cloud is a costly endeavor. To separate the geometrical shape regions on 3D point cloud, we are developing a structure discrimination method using 3D and 2D deep learning to contribute to the advancement of 3D modeling automation technology. In this paper, we present a method for transferring and fusing labels to handle 2D prediction labels in 3D space. We propose an exhaustive label fusion method designed for plant facilities with intricate structures. Through evaluation on a mock-up plant dataset, we confirmed the method’s effective performance.
通过对二维语义分割得出的标签进行反投影,识别三维点云中的植物结构
在福岛第一核电站的退役工作中,辐射剂量计算需要工作空间的三维模型,以确定减少辐射的适当措施。然而,从三维点云构建三维模型是一项成本高昂的工作。为了分离三维点云上的几何形状区域,我们正在开发一种使用三维和二维深度学习的结构判别方法,以促进三维建模自动化技术的发展。在本文中,我们提出了一种转移和融合标签的方法,以处理三维空间中的二维预测标签。我们针对结构复杂的工厂设施提出了一种详尽的标签融合方法。通过对模拟工厂数据集的评估,我们证实了该方法的有效性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信