Advancements in Unsupervised Learning: Mode-Assisted Quantum Restricted Boltzmann Machines Leveraging Neuromorphic Computing on the Dynex Platform

Adam Neumann
{"title":"Advancements in Unsupervised Learning: Mode-Assisted Quantum Restricted Boltzmann Machines Leveraging Neuromorphic Computing on the Dynex Platform","authors":"Adam Neumann","doi":"10.61797/ijbic.v3i1.300","DOIUrl":null,"url":null,"abstract":"The integration of neuromorphic computing into the Dynex platform signifies a transformative step in computational technology, particularly in the realms of machine learning and optimization. This advanced platform leverages the unique attributes of neuromorphic dynamics, utilizing neuromorphic annealing - a technique divergent from conventional computing methods - to adeptly address intricate problems in discrete optimization, sampling, and machine learning. Our research concentrates on enhancing the training process of Restricted Boltzmann Machines (RBMs), a category of generative models traditionally challenged by the intricacy of computing their gradient. Our proposed methodology, termed “quantum mode training”, blends standard gradient updates with an off-gradient direction derived from RBM ground state samples. This approach significantly improves the training efficacy of RBMs, outperforming traditional gradient methods in terms of speed, stability, and minimized converged relative entropy (KL divergence). This study not only highlights the capabilities of the Dynex platform in progressing unsupervised learning techniques but also contributes substantially to the broader comprehension and utilization of neuromorphic computing in complex computational tasks.","PeriodicalId":512670,"journal":{"name":"International Journal of Bioinformatics and Intelligent Computing","volume":"250 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61797/ijbic.v3i1.300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of neuromorphic computing into the Dynex platform signifies a transformative step in computational technology, particularly in the realms of machine learning and optimization. This advanced platform leverages the unique attributes of neuromorphic dynamics, utilizing neuromorphic annealing - a technique divergent from conventional computing methods - to adeptly address intricate problems in discrete optimization, sampling, and machine learning. Our research concentrates on enhancing the training process of Restricted Boltzmann Machines (RBMs), a category of generative models traditionally challenged by the intricacy of computing their gradient. Our proposed methodology, termed “quantum mode training”, blends standard gradient updates with an off-gradient direction derived from RBM ground state samples. This approach significantly improves the training efficacy of RBMs, outperforming traditional gradient methods in terms of speed, stability, and minimized converged relative entropy (KL divergence). This study not only highlights the capabilities of the Dynex platform in progressing unsupervised learning techniques but also contributes substantially to the broader comprehension and utilization of neuromorphic computing in complex computational tasks.
无监督学习的进步:在 Dynex 平台上利用神经形态计算的模式辅助量子受限玻尔兹曼机
将神经形态计算整合到 Dynex 平台,标志着计算技术,尤其是机器学习和优化领域的计算技术迈出了变革性的一步。这种先进的平台利用神经形态动力学的独特属性,利用神经形态退火技术(一种不同于传统计算方法的技术),巧妙地解决了离散优化、采样和机器学习中的复杂问题。我们的研究主要集中在增强受限玻尔兹曼机(RBM)的训练过程,这是一类生成模型,传统上受到计算其梯度的复杂性的挑战。我们提出的方法被称为 "量子模式训练",它将标准梯度更新与来自 RBM 基态样本的非梯度方向相结合。这种方法大大提高了 RBM 的训练效率,在速度、稳定性和最小收敛相对熵(KL 发散)方面都优于传统梯度方法。这项研究不仅凸显了 Dynex 平台在推进无监督学习技术方面的能力,还对神经形态计算在复杂计算任务中的广泛理解和利用做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信