{"title":"Molecular Mechanisms Underlying Vascular Remodeling in Hypertension","authors":"Xinyi Zeng, Yan Yang","doi":"10.31083/j.rcm2502072","DOIUrl":null,"url":null,"abstract":"Hypertension, a common cardiovascular disease, is primarily characterized by vascular remodeling. Recent extensive research has led to significant progress in understanding its mechanisms. Traditionally, vascular remodeling has been described as a unidirectional process in which blood vessels undergo adaptive remodeling or maladaptive remodeling. Adaptive remodeling involves an increase in vessel diameter in response to increased blood flow, while maladaptive remodeling refers to the narrowing or thickening of blood vessels in response to pathological conditions. However, recent research has revealed that vascular remodeling is much more complex. It is now understood that vascular remodeling is a dynamic interplay between various cellular and molecular events. This interplay process involves different cell types, including endothelial cells, smooth muscle cells, and immune cells, as well as their interactions with the extracellular matrix. Through these interactions, blood vessels undergo intricate and dynamic changes in structure and function in response to various stimuli. Moreover, vascular remodeling involves various factors and mechanisms such as the renin-angiotensin-aldosterone system (RAS), oxidative stress, inflammation, the extracellular matrix (ECM), sympathetic nervous system (SNS) and mechanical stress that impact the arterial wall. These factors may lead to vascular and circulatory system diseases and are primary causes of long-term increases in systemic vascular resistance in hypertensive patients. Additionally, the presence of stem cells in adventitia, media, and intima of blood vessels plays a crucial role in vascular remodeling and disease development. In the future, research will focus on examining the underlying mechanisms contributing to hypertensive vascular remodeling to develop potential solutions for hypertension treatment. This review provides us with a fresh perspective on hypertension and vascular remodeling, undoubtedly sparking further research efforts aimed at uncovering more potent treatments and enhanced preventive and control measures for this disease","PeriodicalId":507771,"journal":{"name":"Reviews in Cardiovascular Medicine","volume":"408 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.rcm2502072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hypertension, a common cardiovascular disease, is primarily characterized by vascular remodeling. Recent extensive research has led to significant progress in understanding its mechanisms. Traditionally, vascular remodeling has been described as a unidirectional process in which blood vessels undergo adaptive remodeling or maladaptive remodeling. Adaptive remodeling involves an increase in vessel diameter in response to increased blood flow, while maladaptive remodeling refers to the narrowing or thickening of blood vessels in response to pathological conditions. However, recent research has revealed that vascular remodeling is much more complex. It is now understood that vascular remodeling is a dynamic interplay between various cellular and molecular events. This interplay process involves different cell types, including endothelial cells, smooth muscle cells, and immune cells, as well as their interactions with the extracellular matrix. Through these interactions, blood vessels undergo intricate and dynamic changes in structure and function in response to various stimuli. Moreover, vascular remodeling involves various factors and mechanisms such as the renin-angiotensin-aldosterone system (RAS), oxidative stress, inflammation, the extracellular matrix (ECM), sympathetic nervous system (SNS) and mechanical stress that impact the arterial wall. These factors may lead to vascular and circulatory system diseases and are primary causes of long-term increases in systemic vascular resistance in hypertensive patients. Additionally, the presence of stem cells in adventitia, media, and intima of blood vessels plays a crucial role in vascular remodeling and disease development. In the future, research will focus on examining the underlying mechanisms contributing to hypertensive vascular remodeling to develop potential solutions for hypertension treatment. This review provides us with a fresh perspective on hypertension and vascular remodeling, undoubtedly sparking further research efforts aimed at uncovering more potent treatments and enhanced preventive and control measures for this disease