Differentiability of G-neutral stochastic differential equations with respect to parameter

IF 0.3 Q4 STATISTICS & PROBABILITY
Zakaria Boumezbeur, H. Boutabia, A. Redjil, O. Kebiri
{"title":"Differentiability of G-neutral stochastic differential equations with respect to parameter","authors":"Zakaria Boumezbeur, H. Boutabia, A. Redjil, O. Kebiri","doi":"10.1515/rose-2024-2005","DOIUrl":null,"url":null,"abstract":"\n In this paper, we study the\ndifferentiability of solutions of neutral stochastic differential equations\ndriven by G-Brownian motion with respect to parameter. Under suitable\nassumptions, we show that solutions are differentiable with respect to the\nparameter which appears in the initial data. In addition, the stochastic\ndifferential equation of the derivative is given and the\nexistence-uniqueness of solution is proved. Moreover, an example to\nillustrate the theoretically obtained results is presented.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2024-2005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the differentiability of solutions of neutral stochastic differential equations driven by G-Brownian motion with respect to parameter. Under suitable assumptions, we show that solutions are differentiable with respect to the parameter which appears in the initial data. In addition, the stochastic differential equation of the derivative is given and the existence-uniqueness of solution is proved. Moreover, an example to illustrate the theoretically obtained results is presented.
G-中性随机微分方程关于参数的可微分性
本文研究了由 G 布朗运动驱动的中性随机微分方程解关于参数的可微性。在适当的假设条件下,我们证明了解是可微的,且与初始数据中出现的参数有关。此外,还给出了导数的随机微分方程,并证明了解的唯一性。此外,我们还给出了一个例子来说明理论上得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信