HUBO & QUBO and Prime Factorization

Samer Rahmeh, Adam Neumann
{"title":"HUBO & QUBO and Prime Factorization","authors":"Samer Rahmeh, Adam Neumann","doi":"10.61797/ijbic.v3i1.301","DOIUrl":null,"url":null,"abstract":"This document details the methodology and steps taken to convert Higher Order Unconstrained Binary Optimization (HUBO) models into Quadratic Unconstrained Binary Optimization (QUBO) models. The focus is primarily on prime factorization problems; a critical and computationally intensive task relevant in various domains including cryptography, optimization, and number theory. The conversion from Higher-Order Binary Optimization (HUBO) to Quadratic Unconstrained Binary Optimization (QUBO) models is crucial for harnessing the capabilities of advanced computing methodologies, particularly quantum computing and DYNEX neuromorphic computing. Quantum computing offers potential exponential speedups for specific problems through its intrinsic parallelism capabilities. Conversely, DYNEX neuromorphic computing enhances efficiency and accelerates the resolution of intricate, pattern-oriented tasks by simulating memristors in GPUs, employing a highly decentralized approach, via Blockchain technology. This transformation enables the exploitation of these cutting-edge computing paradigms to address complex optimization challenges effectively. Through detailed explanations, mathematical formulations, and algorithmic strategies, this document aims to provide a comprehensive guide to understanding and implementing the conversion process from HUBO to QUBO. It underscores the importance of such transformations in making prime factorization computationally feasible on both existing classical computers and emerging computing technologies.","PeriodicalId":512670,"journal":{"name":"International Journal of Bioinformatics and Intelligent Computing","volume":"469 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61797/ijbic.v3i1.301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This document details the methodology and steps taken to convert Higher Order Unconstrained Binary Optimization (HUBO) models into Quadratic Unconstrained Binary Optimization (QUBO) models. The focus is primarily on prime factorization problems; a critical and computationally intensive task relevant in various domains including cryptography, optimization, and number theory. The conversion from Higher-Order Binary Optimization (HUBO) to Quadratic Unconstrained Binary Optimization (QUBO) models is crucial for harnessing the capabilities of advanced computing methodologies, particularly quantum computing and DYNEX neuromorphic computing. Quantum computing offers potential exponential speedups for specific problems through its intrinsic parallelism capabilities. Conversely, DYNEX neuromorphic computing enhances efficiency and accelerates the resolution of intricate, pattern-oriented tasks by simulating memristors in GPUs, employing a highly decentralized approach, via Blockchain technology. This transformation enables the exploitation of these cutting-edge computing paradigms to address complex optimization challenges effectively. Through detailed explanations, mathematical formulations, and algorithmic strategies, this document aims to provide a comprehensive guide to understanding and implementing the conversion process from HUBO to QUBO. It underscores the importance of such transformations in making prime factorization computationally feasible on both existing classical computers and emerging computing technologies.
HUBO、QUBO 和质因式分解
本文件详细介绍了将高阶无约束二进制优化(HUBO)模型转换为二次无约束二进制优化(QUBO)模型的方法和步骤。重点主要放在素因式分解问题上;这是一项关键的计算密集型任务,与密码学、优化和数论等多个领域相关。从高阶二进制优化(HUBO)到二次无约束二进制优化(QUBO)模型的转换,对于利用先进计算方法的能力至关重要,特别是量子计算和 DYNEX 神经形态计算。量子计算通过其内在的并行能力为特定问题提供了指数级的潜在加速。相反,DYNEX 神经形态计算通过区块链技术,采用高度去中心化的方法,在 GPU 中模拟忆阻器,从而提高效率,加快解决复杂的、以模式为导向的任务。这种转变使人们能够利用这些尖端计算范例,有效解决复杂的优化难题。通过详细解释、数学公式和算法策略,本文旨在为理解和实施从 HUBO 到 QUBO 的转换过程提供全面指导。它强调了这种转换在使质因数分解在现有经典计算机和新兴计算技术上都具有计算可行性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信