Transforming Data into Compliance: Harnessing AI/ML to Enhance Regulatory Reporting Processes

Dr. Sreeram Mullankandy
{"title":"Transforming Data into Compliance: Harnessing AI/ML to Enhance Regulatory Reporting Processes","authors":"Dr. Sreeram Mullankandy","doi":"10.60087/jaigs.v3i1.66","DOIUrl":null,"url":null,"abstract":"This paper delves into the incorporation of artificial intelligence and machine learning (AI/ML) technologies to optimize regulatory reporting processes. It explores how AI/ML algorithms streamline data analysis, interpretation, and compliance within regulatory frameworks. Through the utilization of advanced algorithms, organizations can bolster the efficiency and accuracy of regulatory reporting, resulting in enhanced compliance outcomes. The paper outlines key applications of AI/ML in regulatory reporting and addresses challenges and considerations linked to their implementation. Additionally, it underscores the potential benefits of adopting AI/ML-driven approaches for regulatory reporting processes across diverse industries.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"126 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.v3i1.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper delves into the incorporation of artificial intelligence and machine learning (AI/ML) technologies to optimize regulatory reporting processes. It explores how AI/ML algorithms streamline data analysis, interpretation, and compliance within regulatory frameworks. Through the utilization of advanced algorithms, organizations can bolster the efficiency and accuracy of regulatory reporting, resulting in enhanced compliance outcomes. The paper outlines key applications of AI/ML in regulatory reporting and addresses challenges and considerations linked to their implementation. Additionally, it underscores the potential benefits of adopting AI/ML-driven approaches for regulatory reporting processes across diverse industries.
将数据转化为合规性:利用人工智能/移动语言加强监管报告流程
本文深入探讨了人工智能和机器学习(AI/ML)技术在优化监管报告流程方面的应用。它探讨了人工智能/机器学习算法如何在监管框架内简化数据分析、解释和合规性。通过利用先进的算法,企业可以提高监管报告的效率和准确性,从而增强合规性。本文概述了人工智能/ML 在监管报告中的主要应用,并讨论了与实施这些应用相关的挑战和注意事项。此外,它还强调了在不同行业的监管报告流程中采用人工智能/ML 驱动方法的潜在好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信