{"title":"DERs-Load Flow Convergence Sensitivity Analysis Using Topological Reconfiguration","authors":"Ulises D. Lubo-Matallana, Anny Marquez-Martínez","doi":"10.18273/revuin.v23n1-2024001","DOIUrl":null,"url":null,"abstract":"During the electric power system (EPS) modelling with massive use of distributed energy resources (DERs) - distributed generation (DG), storage and other distributed technologies such as electric vehicles - simplified and ideal conditions are assumed for the active distribution network. From the grid side, these elements are modelled as absorption and injection of power and/or current. In this paper, using the model MV-Benchmarck System CIGRE Task Force C6.04, a comparative analytical straightforward algorithm of convergence limits on load flow based on sum of powers and sum of currents along the topological matrix has been simulated. The convergence sensitivity analysis was examined for 3 system characteristics: radial and meshed Configuration, DG penetration and R/X ratio, finding percentage differences of up to 6% convergence sensitivity by power hosting capacity between two -non-linear- methods used for load flow.","PeriodicalId":278060,"journal":{"name":"Revista UIS Ingenierías","volume":"657 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista UIS Ingenierías","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revuin.v23n1-2024001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
During the electric power system (EPS) modelling with massive use of distributed energy resources (DERs) - distributed generation (DG), storage and other distributed technologies such as electric vehicles - simplified and ideal conditions are assumed for the active distribution network. From the grid side, these elements are modelled as absorption and injection of power and/or current. In this paper, using the model MV-Benchmarck System CIGRE Task Force C6.04, a comparative analytical straightforward algorithm of convergence limits on load flow based on sum of powers and sum of currents along the topological matrix has been simulated. The convergence sensitivity analysis was examined for 3 system characteristics: radial and meshed Configuration, DG penetration and R/X ratio, finding percentage differences of up to 6% convergence sensitivity by power hosting capacity between two -non-linear- methods used for load flow.