Nuclide identification algorithm for Polyvinyl Toluene scintillation detector based on Deep Neural Network

Hiep Cao, Tien Hung Dinh, Kim Chien Dinh, Thi Thoa Nguyen, D. Pham, X. H. Nguyen
{"title":"Nuclide identification algorithm for Polyvinyl Toluene scintillation detector based on Deep Neural Network","authors":"Hiep Cao, Tien Hung Dinh, Kim Chien Dinh, Thi Thoa Nguyen, D. Pham, X. H. Nguyen","doi":"10.53747/nst.v12i4.347","DOIUrl":null,"url":null,"abstract":"Radiation portal monitors (RPMs) are now stationed at strategic areas (airports, ports, etc.) to identify the illegal transportation of radioactive sources and nuclear items. RPMs are typically fitted with a PVT detector with a high recording efficiency. Radioisotope identification from the gamma spectrum acquired on this detector is normally not regarded due to the low resolution. This research describes an artificial neural network-based isotope identification algorithm that was applied to the gamma spectrum collected from the RPM's PVT detector. With excellent precision, this approach can detect one or a mixture of isotopes on the spectrum. The model still recognizes the training isotopes with >89 percent accuracy for spectra with the gain displacement in the range of 20 percent.","PeriodicalId":19445,"journal":{"name":"Nuclear Science and Technology","volume":"998 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53747/nst.v12i4.347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radiation portal monitors (RPMs) are now stationed at strategic areas (airports, ports, etc.) to identify the illegal transportation of radioactive sources and nuclear items. RPMs are typically fitted with a PVT detector with a high recording efficiency. Radioisotope identification from the gamma spectrum acquired on this detector is normally not regarded due to the low resolution. This research describes an artificial neural network-based isotope identification algorithm that was applied to the gamma spectrum collected from the RPM's PVT detector. With excellent precision, this approach can detect one or a mixture of isotopes on the spectrum. The model still recognizes the training isotopes with >89 percent accuracy for spectra with the gain displacement in the range of 20 percent.
基于深度神经网络的聚乙烯醇闪烁探测器核素识别算法
现在,辐射门户监测器(RPMs)驻扎在战略要地(机场、港口等),以识别放射源和核物品的非法运输。RPM 通常装有一个记录效率很高的 PVT 探测器。由于分辨率较低,通常无法从该探测器获得的伽马能谱中识别放射性同位素。本研究介绍了一种基于人工神经网络的同位素识别算法,该算法应用于从 RPM 的 PVT 探测器采集的伽马能谱。这种方法具有极高的精确度,可以检测到光谱上的一种或多种同位素。对于增益位移在 20% 范围内的光谱,该模型识别训练同位素的准确率仍大于 89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信