The Growth of Contemporary Music Subject and the Reform of Music Teaching in Universities

Q2 Social Sciences
Binbin Zhao, Rim Razzouk
{"title":"The Growth of Contemporary Music Subject and the Reform of Music Teaching in Universities","authors":"Binbin Zhao, Rim Razzouk","doi":"10.4018/ijwltt.338362","DOIUrl":null,"url":null,"abstract":"In order to promote the growth of contemporary music and the reform of music, this article designs an improved collaborative filtering (CF) algorithm to solve the problem of sparse matrix in traditional recommendation algorithms. The data matrix is dimensionally reduced to find the nearest neighbor, so as to realize personalized recommendation of music teaching resources in colleges and universities. The test results show that the accuracy of the proposed teaching resource recommendation algorithm is improved by 22.56% compared with the traditional CF algorithm. The improved CF algorithm can provide more accurate prediction, and the recommendation effect of the improved algorithm is better than the original algorithm, which can effectively avoid the sparse matrix problem faced by the CF algorithm, and provide technical support for the development of contemporary music discipline and the reform of music discipline.","PeriodicalId":39282,"journal":{"name":"International Journal of Web-Based Learning and Teaching Technologies","volume":"59 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web-Based Learning and Teaching Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijwltt.338362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In order to promote the growth of contemporary music and the reform of music, this article designs an improved collaborative filtering (CF) algorithm to solve the problem of sparse matrix in traditional recommendation algorithms. The data matrix is dimensionally reduced to find the nearest neighbor, so as to realize personalized recommendation of music teaching resources in colleges and universities. The test results show that the accuracy of the proposed teaching resource recommendation algorithm is improved by 22.56% compared with the traditional CF algorithm. The improved CF algorithm can provide more accurate prediction, and the recommendation effect of the improved algorithm is better than the original algorithm, which can effectively avoid the sparse matrix problem faced by the CF algorithm, and provide technical support for the development of contemporary music discipline and the reform of music discipline.
当代音乐学科的发展与大学音乐教学改革
为了促进当代音乐的发展和音乐改革,本文设计了一种改进的协同过滤(CF)算法,以解决传统推荐算法中矩阵稀疏的问题。对数据矩阵进行降维处理,寻找最近邻,从而实现高校音乐教学资源的个性化推荐。测试结果表明,与传统的 CF 算法相比,所提出的教学资源推荐算法的准确率提高了 22.56%。改进后的CF算法能提供更准确的预测,且改进算法的推荐效果优于原算法,能有效避免CF算法面临的稀疏矩阵问题,为当代音乐学科的发展和音乐学科的改革提供技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信