Open Science and the impact of Open Access, Open Data, and FAIR publishing principles on data-driven academic research: Towards ever more transparent, accessible, and reproducible academic output?
{"title":"Open Science and the impact of Open Access, Open Data, and FAIR publishing principles on data-driven academic research: Towards ever more transparent, accessible, and reproducible academic output?","authors":"Gaby Umbach","doi":"10.3233/sji-240021","DOIUrl":null,"url":null,"abstract":"Contemporary evidence-informed policy-making (EIPM) and societies require openly accessible high-quality knowledge as input into transparent and accountable decision-making and informed societal action. Open Science1 supports this requirement. As both enablers and logical consequences of the paradigm of Open Science, the ideas of Open Access, Open Data, and FAIR publishing principles revolutionise how academic research needs to be conceptualised, conducted, disseminated, published, and used. This ‘academic openness quartet’ is especially relevant for the ways in which research data are created, annotated, curated, managed, shared, reproduced, (re-)used, and further developed in academia. Greater accessibility of scientific output and scholarly data also aims at increasing the transparency and reproducibility of research results and the quality of research itself. In the applied ‘academic openness quartet’ perspective, they also function as remedies for academic malaises, like missing replicability of results or secrecy around research data. Against this backdrop, the present article offers a conceptual discussion on the four academic openness paradigms, their meanings, interrelations, as well as potential benefits and challenges arising from their application in data-driven research.","PeriodicalId":55877,"journal":{"name":"Statistical Journal of the IAOS","volume":"133 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Journal of the IAOS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sji-240021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Contemporary evidence-informed policy-making (EIPM) and societies require openly accessible high-quality knowledge as input into transparent and accountable decision-making and informed societal action. Open Science1 supports this requirement. As both enablers and logical consequences of the paradigm of Open Science, the ideas of Open Access, Open Data, and FAIR publishing principles revolutionise how academic research needs to be conceptualised, conducted, disseminated, published, and used. This ‘academic openness quartet’ is especially relevant for the ways in which research data are created, annotated, curated, managed, shared, reproduced, (re-)used, and further developed in academia. Greater accessibility of scientific output and scholarly data also aims at increasing the transparency and reproducibility of research results and the quality of research itself. In the applied ‘academic openness quartet’ perspective, they also function as remedies for academic malaises, like missing replicability of results or secrecy around research data. Against this backdrop, the present article offers a conceptual discussion on the four academic openness paradigms, their meanings, interrelations, as well as potential benefits and challenges arising from their application in data-driven research.
期刊介绍:
This is the flagship journal of the International Association for Official Statistics and is expected to be widely circulated and subscribed to by individuals and institutions in all parts of the world. The main aim of the Journal is to support the IAOS mission by publishing articles to promote the understanding and advancement of official statistics and to foster the development of effective and efficient official statistical services on a global basis. Papers are expected to be of wide interest to readers. Such papers may or may not contain strictly original material. All papers are refereed.