Aaronson-Ambainis Conjecture Is True For Random Restrictions

Sreejata Kishor Bhattacharya
{"title":"Aaronson-Ambainis Conjecture Is True For Random Restrictions","authors":"Sreejata Kishor Bhattacharya","doi":"10.48550/arXiv.2402.13952","DOIUrl":null,"url":null,"abstract":"In an attempt to show that the acceptance probability of a quantum query algorithm making $q$ queries can be well-approximated almost everywhere by a classical decision tree of depth $\\leq \\text{poly}(q)$, Aaronson and Ambainis proposed the following conjecture: let $f: \\{ \\pm 1\\}^n \\rightarrow [0,1]$ be a degree $d$ polynomial with variance $\\geq \\epsilon$. Then, there exists a coordinate of $f$ with influence $\\geq \\text{poly} (\\epsilon, 1/d)$. We show that for any polynomial $f: \\{ \\pm 1\\}^n \\rightarrow [0,1]$ of degree $d$ $(d \\geq 2)$ and variance $\\text{Var}[f] \\geq 1/d$, if $\\rho$ denotes a random restriction with survival probability $\\dfrac{\\log(d)}{C_1 d}$, $$ \\text{Pr} \\left[f_{\\rho} \\text{ has a coordinate with influence} \\geq \\dfrac{\\text{Var}[f]^2 }{d^{C_2}} \\right] \\geq \\dfrac{\\text{Var}[f] \\log(d)}{50C_1 d}$$ where $C_1, C_2>0$ are universal constants. Thus, Aaronson-Ambainis conjecture is true for a non-negligible fraction of random restrictions of the given polynomial assuming its variance is not too low.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"229 3","pages":"TR24-035"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.13952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In an attempt to show that the acceptance probability of a quantum query algorithm making $q$ queries can be well-approximated almost everywhere by a classical decision tree of depth $\leq \text{poly}(q)$, Aaronson and Ambainis proposed the following conjecture: let $f: \{ \pm 1\}^n \rightarrow [0,1]$ be a degree $d$ polynomial with variance $\geq \epsilon$. Then, there exists a coordinate of $f$ with influence $\geq \text{poly} (\epsilon, 1/d)$. We show that for any polynomial $f: \{ \pm 1\}^n \rightarrow [0,1]$ of degree $d$ $(d \geq 2)$ and variance $\text{Var}[f] \geq 1/d$, if $\rho$ denotes a random restriction with survival probability $\dfrac{\log(d)}{C_1 d}$, $$ \text{Pr} \left[f_{\rho} \text{ has a coordinate with influence} \geq \dfrac{\text{Var}[f]^2 }{d^{C_2}} \right] \geq \dfrac{\text{Var}[f] \log(d)}{50C_1 d}$$ where $C_1, C_2>0$ are universal constants. Thus, Aaronson-Ambainis conjecture is true for a non-negligible fraction of random restrictions of the given polynomial assuming its variance is not too low.
阿伦森-安巴尼斯猜想对于随机限制是真的
为了证明量子查询算法进行 $q$ 查询时的接受概率几乎可以在任何地方通过深度为 $\leq \text{poly}(q)$ 的经典决策树很好地近似,Aaronson 和 Ambainis 提出了以下猜想:让 $f:\{ \pm 1\}^n \rightarrow [0,1]$ 是一个度数为 $d$ 的多项式,方差为 $\geq \epsilon$。那么,存在一个影响值为 $\geq \epsilon, 1/d)$ 的 $f$ 坐标。我们证明,对于任意多项式 $f:\{ \pm 1}^n \rightarrow [0,1]$ 度为 $d$ $(d \geq 2)$ 且方差为 $\text{Var}[f] \geq 1/d$ 的多项式,如果 $\rho$ 表示一个随机限制条件,其存活概率为 $\dfrac\{log(d)}{C_1 d}$,则 $$ \text{Pr} 左[f_{pr}^n] 右[0,1]$。\left[f_{rho}\有影响的坐标\dfrac{text{Var}[f]^2 }{d^{C_2}}\(右边]\dfrac {text{Var}[f] \log(d)}{50C_1 d}$$其中$C_1, C_2>0$ 是通用常数。因此,假设给定多项式的方差不是太小,那么阿伦森-安贝尼斯猜想对于给定多项式的非可忽略的随机限制部分是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信