Jiantao Zhao, Ya Chen, Lida Shen, Haozhe Pang, Ziyang Yu, Kai Zhou, Dazhi Huang, Dongsheng Wang
{"title":"One-step preparation of high performance Ni-MoS2 self-lubricating coatings via jet electrodeposition on additive manufactured aluminum alloy","authors":"Jiantao Zhao, Ya Chen, Lida Shen, Haozhe Pang, Ziyang Yu, Kai Zhou, Dazhi Huang, Dongsheng Wang","doi":"10.1177/09544054241232316","DOIUrl":null,"url":null,"abstract":"Composite coatings with solid lubricants can improve the tribological performance of aluminum alloy parts prepared by Laser Powder Bed Fusion (LPBF). In this study, Ni-MoS2 self-lubricating composite coatings were one-step prepared on additive manufactured aluminum alloy surface via jet electrodeposition. The properties and lubrication performance of the coatings prepared using composite electrolyte with different MoS2 particle diameters and concentrations were investigated. The lubrication mechanism of the composite coating was discussed. The results showed that 0.8 μm MoS2 had less agglomeration than 80 nm, resulting in a uniform surface. The lubrication performance of the composite coating was affected by MoS2 particles content and coating hardness. With the increase of MoS2 concentration in the composite electrolyte, the friction coefficient and wear rate decreased, and achieved the best lubrication performance of 0.12 friction coefficient and 0.11 mg/m wear rate when MoS2 composite electrolyte is 5 g/l and MoS2 is 0.8 μm. However, the addition of soft MoS2 decreased the coating hardness, lower hardness will cause lubrication failure.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241232316","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Composite coatings with solid lubricants can improve the tribological performance of aluminum alloy parts prepared by Laser Powder Bed Fusion (LPBF). In this study, Ni-MoS2 self-lubricating composite coatings were one-step prepared on additive manufactured aluminum alloy surface via jet electrodeposition. The properties and lubrication performance of the coatings prepared using composite electrolyte with different MoS2 particle diameters and concentrations were investigated. The lubrication mechanism of the composite coating was discussed. The results showed that 0.8 μm MoS2 had less agglomeration than 80 nm, resulting in a uniform surface. The lubrication performance of the composite coating was affected by MoS2 particles content and coating hardness. With the increase of MoS2 concentration in the composite electrolyte, the friction coefficient and wear rate decreased, and achieved the best lubrication performance of 0.12 friction coefficient and 0.11 mg/m wear rate when MoS2 composite electrolyte is 5 g/l and MoS2 is 0.8 μm. However, the addition of soft MoS2 decreased the coating hardness, lower hardness will cause lubrication failure.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.