Transformation of Elliptic Curve Discrete Logarithm Problem to QUBO Using Direct Method in Quantum Annealing Applications

Q4 Engineering
Michał Wroński, Elżbieta Burek, Łukasz Dzierzkowski, Olgierd Żołnierczyk
{"title":"Transformation of Elliptic Curve Discrete Logarithm Problem to QUBO Using Direct Method in Quantum Annealing Applications","authors":"Michał Wroński, Elżbieta Burek, Łukasz Dzierzkowski, Olgierd Żołnierczyk","doi":"10.26636/jtit.2024.1.1463","DOIUrl":null,"url":null,"abstract":"This paper investigates how to reduce the elliptic curve discrete logarithm problem over prime fields to the quadratic unconstrained binary optimization (QUBO) problem in order to obtain as few logical qubits as possible. In the best case scenario, if n is the bitlength of a characteristic of prime field Fp, approximately 3n³ logical qubits are required for such a reduction in the Edwards curve case. We present a practical attack on an elliptic curve discrete logarithm problem over the 3-bit prime field F7 for an elliptic curve with the subgroup of order 8. We solved this problem using the D-Wave Advantage QPU. To the best of the authors' knowledge, no one has made, so far, a practical attack on the elliptic curve discrete logarithm over a prime field using the direct quantum method.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"4 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.1.1463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates how to reduce the elliptic curve discrete logarithm problem over prime fields to the quadratic unconstrained binary optimization (QUBO) problem in order to obtain as few logical qubits as possible. In the best case scenario, if n is the bitlength of a characteristic of prime field Fp, approximately 3n³ logical qubits are required for such a reduction in the Edwards curve case. We present a practical attack on an elliptic curve discrete logarithm problem over the 3-bit prime field F7 for an elliptic curve with the subgroup of order 8. We solved this problem using the D-Wave Advantage QPU. To the best of the authors' knowledge, no one has made, so far, a practical attack on the elliptic curve discrete logarithm over a prime field using the direct quantum method.
量子退火应用中使用直接法将椭圆曲线离散对数问题转化为 QUBO
本文研究如何将素数域上的椭圆曲线离散对数问题简化为二次无约束二元优化(QUBO)问题,以获得尽可能少的逻辑量子位。在最好的情况下,如果 n 是素域 Fp 特征的比特长度,那么在爱德华曲线的情况下,这种减少大约需要 3n³ 逻辑比特。我们提出了一个在 3 位素数域 F7 上针对阶数为 8 的椭圆曲线的椭圆曲线离散对数问题的实际攻克方法。我们使用 D-Wave Advantage QPU 解决了这个问题。据作者所知,迄今为止还没有人使用直接量子方法对素数域上的椭圆曲线离散对数问题进行过实际攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信