Updates in the NCEP GFS PBL and Convection Models with Environmental Wind Shear Effect and Modified Entrainment and Detrainment Rates and their Impacts on the GFS Hurricane and CAPE Forecasts
{"title":"Updates in the NCEP GFS PBL and Convection Models with Environmental Wind Shear Effect and Modified Entrainment and Detrainment Rates and their Impacts on the GFS Hurricane and CAPE Forecasts","authors":"Jongil Han, Jiayi Peng, Wei Li, Weiguo Wang, Zhan Zhang, Fanglin Yang, Weizhong Zheng","doi":"10.1175/waf-d-23-0134.1","DOIUrl":null,"url":null,"abstract":"\nTo reduce hurricane intensity bias, the NCEP Global Forecast System (GFS) planetary boundary layer (PBL) and convection schemes have been updated with a new parameterization for environmental wind shear and enhanced entrainment and detrainment rates with increasing PBL or sub-cloud mean turbulent kinetic energy (TKE) in their updraft and downdraft mass-flux schemes. Tests with the GFS show that the updated schemes significantly reduce the hurricane intensity bias by reducing the momentum transport in the mass-flux schemes. Along with the reduced intensity bias, the hurricane intensity and track errors have also been reduced. On the other hand, to reduce the PBL overgrowth over areas with a higher vegetation fraction or larger surface roughness, the entrainment rate in the PBL mass-flux scheme has also been increased with increasing vegetation fraction or increasing surface roughness. This entrainment rate increase has increased near surface moisture, and as a result, helped to increase the underestimated convective available potential energy (CAPE) forecasts over the continental United States.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"4 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0134.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To reduce hurricane intensity bias, the NCEP Global Forecast System (GFS) planetary boundary layer (PBL) and convection schemes have been updated with a new parameterization for environmental wind shear and enhanced entrainment and detrainment rates with increasing PBL or sub-cloud mean turbulent kinetic energy (TKE) in their updraft and downdraft mass-flux schemes. Tests with the GFS show that the updated schemes significantly reduce the hurricane intensity bias by reducing the momentum transport in the mass-flux schemes. Along with the reduced intensity bias, the hurricane intensity and track errors have also been reduced. On the other hand, to reduce the PBL overgrowth over areas with a higher vegetation fraction or larger surface roughness, the entrainment rate in the PBL mass-flux scheme has also been increased with increasing vegetation fraction or increasing surface roughness. This entrainment rate increase has increased near surface moisture, and as a result, helped to increase the underestimated convective available potential energy (CAPE) forecasts over the continental United States.