Determination of the porosity characteristics by pycnometric methods

A. B. Ankudinov, M. I. Alymov, V. Zelensky, R. Kapustin, A. E. Sychev, V. S. Shustov
{"title":"Determination of the porosity characteristics by pycnometric methods","authors":"A. B. Ankudinov, M. I. Alymov, V. Zelensky, R. Kapustin, A. E. Sychev, V. S. Shustov","doi":"10.26896/1028-6861-2024-90-2-47-52","DOIUrl":null,"url":null,"abstract":"Data on pore size distribution in solids are obtained by pycnometric density-based methods for measuring the pore structure of materials. The results of measuring open porosity by weighing a dry sample followed by evacuation and saturation with distilled water at atmospheric pressure, impregnation with water under pressure using a hydrostat and mercury porosimetry are presented. The samples of porous nickel obtained using powder technology by sintering of the compacts from mixtures of nickel nanopowder with powder ammonium bicarbonate NH4HCO3 (a blowing agent), the volume fractions of which were 80 and 20%, respectively, were studied. A powder blowing agent with a particle size of 63 – 125, 140 – 200, and 250 – 315 μm was used. A theoretical estimation of the pore size available for the penetration of the impregnating liquid was carried out for three methods used for the determination of open porosity. It is shown that upon water saturation after evacuation the liquid can penetrate only into pores larger than 3 μm. Moreover, in porous structures with a large fraction of submicron pores, the actual values of the open porosity are significantly underestimated when using the method of saturation with distilled water after evacuation. The higher the fraction of fine pores in the material, the lower the open porosity value. The difference between the open porosity values determined by methods of water impregnation using a hydrostat and mercury porosimetry was negligible. It has been established that among three considered methods for measuring open porosity, only the method of saturation with distilled water after evacuation cannot be used in analysis of structures with submicron pores. The results obtained can be used to develop porous functional materials and products with a given porosity structure.","PeriodicalId":504498,"journal":{"name":"Industrial laboratory. Diagnostics of materials","volume":"29 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial laboratory. Diagnostics of materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26896/1028-6861-2024-90-2-47-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data on pore size distribution in solids are obtained by pycnometric density-based methods for measuring the pore structure of materials. The results of measuring open porosity by weighing a dry sample followed by evacuation and saturation with distilled water at atmospheric pressure, impregnation with water under pressure using a hydrostat and mercury porosimetry are presented. The samples of porous nickel obtained using powder technology by sintering of the compacts from mixtures of nickel nanopowder with powder ammonium bicarbonate NH4HCO3 (a blowing agent), the volume fractions of which were 80 and 20%, respectively, were studied. A powder blowing agent with a particle size of 63 – 125, 140 – 200, and 250 – 315 μm was used. A theoretical estimation of the pore size available for the penetration of the impregnating liquid was carried out for three methods used for the determination of open porosity. It is shown that upon water saturation after evacuation the liquid can penetrate only into pores larger than 3 μm. Moreover, in porous structures with a large fraction of submicron pores, the actual values of the open porosity are significantly underestimated when using the method of saturation with distilled water after evacuation. The higher the fraction of fine pores in the material, the lower the open porosity value. The difference between the open porosity values determined by methods of water impregnation using a hydrostat and mercury porosimetry was negligible. It has been established that among three considered methods for measuring open porosity, only the method of saturation with distilled water after evacuation cannot be used in analysis of structures with submicron pores. The results obtained can be used to develop porous functional materials and products with a given porosity structure.
用比重法测定孔隙率特征
固体中的孔径分布数据是通过基于密度计的方法获得的,用于测量材料的孔隙结构。报告介绍了通过称量干燥样品,然后在大气压下用蒸馏水抽空和饱和、使用水压试验器在压力下用水浸渍以及水银孔隙度测定法测量开放孔隙度的结果。研究了利用粉末技术从纳米镍粉与粉末碳酸氢铵 NH4HCO3(一种发泡剂)的混合物(体积分数分别为 80% 和 20%)中烧结得到的多孔镍样品。使用的粉末发泡剂粒径分别为 63 - 125、140 - 200 和 250 - 315 μm。针对用于测定开放孔隙率的三种方法,对浸渍液渗透的孔隙大小进行了理论估算。结果表明,排空后水饱和时,液体只能渗透到大于 3 μm 的孔隙中。此外,在亚微米孔隙比例较大的多孔结构中,使用排空后蒸馏水饱和法时,开孔率的实际值会被大大低估。材料中细孔的比例越高,开孔率值就越低。使用水压仪浸水法和水银孔隙度测定法确定的开放孔隙度值之间的差异可以忽略不计。研究表明,在三种测量开放孔隙率的方法中,只有蒸馏水饱和抽真空法不能用于亚微米孔隙结构的分析。所得结果可用于开发具有特定孔隙率结构的多孔功能材料和产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信