Multi-Scale Acoustic Velocity Inversion Based on a Convolutional Neural Network

Remote. Sens. Pub Date : 2024-02-22 DOI:10.3390/rs16050772
Wenda Li, Tian Wu, Hong Liu
{"title":"Multi-Scale Acoustic Velocity Inversion Based on a Convolutional Neural Network","authors":"Wenda Li, Tian Wu, Hong Liu","doi":"10.3390/rs16050772","DOIUrl":null,"url":null,"abstract":"The full waveform inversion at this stage still has many problems in the recovery of deep background velocities. Velocity modeling based on end-to-end deep learning usually lacks a generalization capability. The proposed method is a multi-scale convolutional neural network velocity inversion (Ms-CNNVI) that incorporates a multi-scale strategy into the CNN-based velocity inversion algorithm for the first time. This approach improves the accuracy of the inversion by integrating a multi-scale strategy from low-frequency to high-frequency inversion and by incorporating a smoothing strategy in the multi-scale (MS) convolutional neural network (CNN) inversion process. Furthermore, using angle-domain reverse time migration (RTM) for dataset construction in Ms-CNNVI significantly improves the inversion efficiency. Numerical tests showcase the efficacy of the suggested approach.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs16050772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The full waveform inversion at this stage still has many problems in the recovery of deep background velocities. Velocity modeling based on end-to-end deep learning usually lacks a generalization capability. The proposed method is a multi-scale convolutional neural network velocity inversion (Ms-CNNVI) that incorporates a multi-scale strategy into the CNN-based velocity inversion algorithm for the first time. This approach improves the accuracy of the inversion by integrating a multi-scale strategy from low-frequency to high-frequency inversion and by incorporating a smoothing strategy in the multi-scale (MS) convolutional neural network (CNN) inversion process. Furthermore, using angle-domain reverse time migration (RTM) for dataset construction in Ms-CNNVI significantly improves the inversion efficiency. Numerical tests showcase the efficacy of the suggested approach.
基于卷积神经网络的多尺度声速反演
现阶段的全波形反演在恢复深层背景速度方面仍存在许多问题。基于端到端深度学习的速度建模通常缺乏泛化能力。本文提出的方法是多尺度卷积神经网络速度反演(Ms-CNNVI),首次将多尺度策略纳入基于 CNN 的速度反演算法。该方法通过整合从低频到高频的多尺度反演策略,并在多尺度(MS)卷积神经网络(CNN)反演过程中加入平滑策略,提高了反演精度。此外,在 Ms-CNNVI 中使用角域反向时间迁移(RTM)来构建数据集,显著提高了反演效率。数值测试证明了所建议方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信