Application of a Combinatorial Vortex Detection Algorithm on 2 Component 2 Dimensional Particle Image Velocimetry Data to Characterize the Wake of an Oscillating Wing

Fluids Pub Date : 2024-02-22 DOI:10.3390/fluids9030053
M. Bussière, G. Bessa, Charles R. Koch, David S. Nobes
{"title":"Application of a Combinatorial Vortex Detection Algorithm on 2 Component 2 Dimensional Particle Image Velocimetry Data to Characterize the Wake of an Oscillating Wing","authors":"M. Bussière, G. Bessa, Charles R. Koch, David S. Nobes","doi":"10.3390/fluids9030053","DOIUrl":null,"url":null,"abstract":"To investigate the vortical wake pattern generated by water flow past an oscillating symmetric airfoil, using experimental velocity fields from particle image velocimetry (PIV), a novel combinatorial vortex detection (CVD) algorithm is developed. The primary goal is to identify and characterize vortices within the wake. Experimental flows introduce complexities not present in numerical simulations, posing challenges for vortex detection. The proposed CVD approach offers a more robust alternative, excelling in both vortex detection and quantification of essential parameters, unlike widely-used methods such as Q-criterion, λ2-criterion, and Δ-criterion, which rely on subjective and arbitrary thresholds resulting in uncertainty. The CVD algorithm effectively characterizes the airfoil wake, identifying and analyzing vortices aligning with the Burgers model. This research enhances understanding of wake phenomena and showcases the algorithm’s potential as a valuable tool for vortex detection and characterization, particularly for experimental fluid dynamics. It provides a comprehensive, robust, and non-arbitrary approach, overcoming limitations of traditional methods and opening new avenues for studying complex flows.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"19 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9030053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the vortical wake pattern generated by water flow past an oscillating symmetric airfoil, using experimental velocity fields from particle image velocimetry (PIV), a novel combinatorial vortex detection (CVD) algorithm is developed. The primary goal is to identify and characterize vortices within the wake. Experimental flows introduce complexities not present in numerical simulations, posing challenges for vortex detection. The proposed CVD approach offers a more robust alternative, excelling in both vortex detection and quantification of essential parameters, unlike widely-used methods such as Q-criterion, λ2-criterion, and Δ-criterion, which rely on subjective and arbitrary thresholds resulting in uncertainty. The CVD algorithm effectively characterizes the airfoil wake, identifying and analyzing vortices aligning with the Burgers model. This research enhances understanding of wake phenomena and showcases the algorithm’s potential as a valuable tool for vortex detection and characterization, particularly for experimental fluid dynamics. It provides a comprehensive, robust, and non-arbitrary approach, overcoming limitations of traditional methods and opening new avenues for studying complex flows.
在 2 分 2 维粒子图像测速仪数据上应用组合涡流检测算法来描述摆动机翼的尾流特征
为了利用粒子图像测速仪(PIV)的实验速度场研究水流经过摆动对称翼面时产生的涡流尾流模式,我们开发了一种新型组合涡流检测(CVD)算法。其主要目标是识别和描述尾流中的涡旋。实验流引入了数值模拟中不存在的复杂性,给涡流检测带来了挑战。与 Q 标准、λ2 标准和 Δ 标准等广泛使用的方法不同,拟议的 CVD 方法提供了一种更稳健的替代方法,在涡流检测和基本参数量化方面都表现出色,而这些方法依赖于主观和任意的阈值,从而导致不确定性。CVD 算法能有效描述机翼尾流特征,识别和分析与布尔格斯模型一致的涡流。这项研究加深了对尾流现象的理解,并展示了该算法作为涡流检测和表征的重要工具的潜力,特别是在实验流体动力学方面。它提供了一种全面、稳健和非任意的方法,克服了传统方法的局限性,为研究复杂流动开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信