Consistency of the inverse scattering imaging condition, the energy norm imaging condition and the impedance kernel in acoustic and elastic reverse-time migration

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Pengfei Wang, Jidong Yang, Jianping Huang, Jiaxing Sun, Chong Zhao
{"title":"Consistency of the inverse scattering imaging condition, the energy norm imaging condition and the impedance kernel in acoustic and elastic reverse-time migration","authors":"Pengfei Wang, Jidong Yang, Jianping Huang, Jiaxing Sun, Chong Zhao","doi":"10.1093/jge/gxae022","DOIUrl":null,"url":null,"abstract":"\n In this work, we draw connections between the imaging conditions using the impedance kernel, the inverse scattering imaging condition, and the energy norm imaging condition in acoustic and elastic reverse-time migration (RTM). Traditional RTM often introduces large low-wavenumber artifacts that degrade image quality in intricate geological structures with large velocity variations. In practice, the Laplacian filter is commonly used to remove these low-wavenumber artifacts, but it changes the image wavenumber spectrum. The advanced imaging conditions of the inverse scattering, the energy norm, and the impedance kernel can effectively remove the low-wavenumber artifacts while not changing the wavenumber spectrum. This study aims to build a connection between these three types of imaging conditions by conducting detailed analysis in the wavenumber domain for acoustic and elastic RTMs. We find that they are exactly the same except for the varying weights of the source-receiver wavefield cross-correlation. All three imaging conditions can generate clear RTM images that are not affected by low-wavenumber artifacts. Numerical examples for a simple model, Sigsbee 2a, and BP models verify the consistency of these three imaging conditions and show their advantage over conventional simple zero-lag cross-correlation imaging conditions. This is important for improving the quality and reliability of seismic imaging technology.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae022","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we draw connections between the imaging conditions using the impedance kernel, the inverse scattering imaging condition, and the energy norm imaging condition in acoustic and elastic reverse-time migration (RTM). Traditional RTM often introduces large low-wavenumber artifacts that degrade image quality in intricate geological structures with large velocity variations. In practice, the Laplacian filter is commonly used to remove these low-wavenumber artifacts, but it changes the image wavenumber spectrum. The advanced imaging conditions of the inverse scattering, the energy norm, and the impedance kernel can effectively remove the low-wavenumber artifacts while not changing the wavenumber spectrum. This study aims to build a connection between these three types of imaging conditions by conducting detailed analysis in the wavenumber domain for acoustic and elastic RTMs. We find that they are exactly the same except for the varying weights of the source-receiver wavefield cross-correlation. All three imaging conditions can generate clear RTM images that are not affected by low-wavenumber artifacts. Numerical examples for a simple model, Sigsbee 2a, and BP models verify the consistency of these three imaging conditions and show their advantage over conventional simple zero-lag cross-correlation imaging conditions. This is important for improving the quality and reliability of seismic imaging technology.
声学和弹性反向时间迁移中的反向散射成像条件、能量规范成像条件和阻抗核的一致性
在这项工作中,我们将声学和弹性反向时间迁移(RTM)中使用阻抗核的成像条件、反向散射成像条件和能量规范成像条件联系起来。传统的 RTM 通常会引入较大的低波数伪影,从而降低速度变化较大的复杂地质结构的成像质量。在实践中,通常使用拉普拉斯滤波器来去除这些低文数伪影,但它会改变图像的文数频谱。反散射、能量规范和阻抗核等先进的成像条件可以有效去除低文数伪影,同时不改变文数谱。本研究旨在通过对声学 RTM 和弹性 RTM 的波长域进行详细分析,建立这三类成像条件之间的联系。我们发现,除了声源-接收器波场交叉相关的权重不同外,它们的成像条件完全相同。所有这三种成像条件都能生成清晰的 RTM 图像,且不受低纬度伪影的影响。简单模型、Sigsbee 2a 和 BP 模型的数值示例验证了这三种成像条件的一致性,并显示了它们与传统的简单零滞后交叉相关成像条件相比的优势。这对提高地震成像技术的质量和可靠性非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信