Measuring water-used and production efficiency in China using the super-efficient directional distance function

Water Supply Pub Date : 2024-02-22 DOI:10.2166/ws.2024.029
Jun Wang, Ching‐Cheng Lu, Jiayu Zhang, Chen-Ling Cheng
{"title":"Measuring water-used and production efficiency in China using the super-efficient directional distance function","authors":"Jun Wang, Ching‐Cheng Lu, Jiayu Zhang, Chen-Ling Cheng","doi":"10.2166/ws.2024.029","DOIUrl":null,"url":null,"abstract":"\n This study employs the super-efficiency directional distance function (SDDF) to assess the productivity of each administrative region in China over the period 2013–2017. The focus is on exploring variations in gross domestic production and efficiency related to waste gas and wastewater discharge across regions. The inputs include labor, capitalization, energy usage, and total water consumption, with domestic gross production as the output, and total wastewater and exhaust gas discharges as unintended outputs. The findings highlight Beijing, Tianjin, Hainan, Qinghai, Guangdong, Shanghai, Jiangsu, and Shandong as the most efficient regions, while Zhejiang, Ningxia, Hunan, and others exhibit lower performance. Notably, Guangxi ranks lowest (0.631). Unlike traditional DDF models, the SDDF model provides a more accurate estimation of the production efficiency of all 30 administrative regions, and addresses the limitation of generating the same efficiency values of 1 simultaneously for multiple regions. The study emphasizes the need for inefficient regions to reduce water consumption and emissions and enhance productivity, offering valuable insights for policymakers in formulating environmental and production policies.","PeriodicalId":23725,"journal":{"name":"Water Supply","volume":"51 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2024.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs the super-efficiency directional distance function (SDDF) to assess the productivity of each administrative region in China over the period 2013–2017. The focus is on exploring variations in gross domestic production and efficiency related to waste gas and wastewater discharge across regions. The inputs include labor, capitalization, energy usage, and total water consumption, with domestic gross production as the output, and total wastewater and exhaust gas discharges as unintended outputs. The findings highlight Beijing, Tianjin, Hainan, Qinghai, Guangdong, Shanghai, Jiangsu, and Shandong as the most efficient regions, while Zhejiang, Ningxia, Hunan, and others exhibit lower performance. Notably, Guangxi ranks lowest (0.631). Unlike traditional DDF models, the SDDF model provides a more accurate estimation of the production efficiency of all 30 administrative regions, and addresses the limitation of generating the same efficiency values of 1 simultaneously for multiple regions. The study emphasizes the need for inefficient regions to reduce water consumption and emissions and enhance productivity, offering valuable insights for policymakers in formulating environmental and production policies.
利用超高效定向距离函数测量中国的用水和生产效率
本研究采用超效率定向距离函数(SDDF)来评估 2013-2017 年间中国各行政区域的生产率。重点探讨各地区与废气和废水排放相关的国内生产总值和效率的变化。投入包括劳动力、资本化、能源使用和总用水量,国内生产总值为产出,废水和废气排放总量为非预期产出。研究结果表明,北京、天津、海南、青海、广东、上海、江苏和山东是效率最高的地区,而浙江、宁夏、湖南和其他地区则表现较差。值得注意的是,广西排名最低(0.631)。与传统的 DDF 模型不同,SDDF 模型能更准确地估计全部 30 个行政区的生产效率,并解决了多个地区同时生成相同效率值 1 的局限性。该研究强调了低效率地区减少用水和排放、提高生产效率的必要性,为政策制定者制定环境和生产政策提供了有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信