On the dynamics of spring-pendulum system: an overview of configuration space and phase space

Siti Wahyuni, N. W. Rini, J. Saefan
{"title":"On the dynamics of spring-pendulum system: an overview of configuration space and phase space","authors":"Siti Wahyuni, N. W. Rini, J. Saefan","doi":"10.24815/jn.v24i1.33247","DOIUrl":null,"url":null,"abstract":"The dynamics of the spring-pendulum system with two degrees of freedom were studied. The motion of this system is restricted to be in a vertical plane so that the chosen generalized coordinates are the increased length of the spring  and the swing angle of pendulum . Hamiltonian of the system is obtained from the Legendre transformation of Lagrangian. Hamilton’s equation yields four differential equations that represent the dynamic of the system. The obtained results were visualized in configuration space and phase space trajectories. It is shown that generally the greater the initial swing angle, the more complex pattern will occur followed by the appearance of chaotic phenomena.","PeriodicalId":32986,"journal":{"name":"Jurnal Natural","volume":"21 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Natural","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24815/jn.v24i1.33247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of the spring-pendulum system with two degrees of freedom were studied. The motion of this system is restricted to be in a vertical plane so that the chosen generalized coordinates are the increased length of the spring  and the swing angle of pendulum . Hamiltonian of the system is obtained from the Legendre transformation of Lagrangian. Hamilton’s equation yields four differential equations that represent the dynamic of the system. The obtained results were visualized in configuration space and phase space trajectories. It is shown that generally the greater the initial swing angle, the more complex pattern will occur followed by the appearance of chaotic phenomena.
论弹簧摆系统的动力学:构型空间和相空间概述
研究了具有两个自由度的弹簧摆系统的动力学。该系统的运动被限制在垂直平面内,因此选择的广义坐标为弹簧的增大长度和摆锤的摆动角度。根据拉格朗日的 Legendre 变换可得到系统的哈密顿方程。汉密尔顿方程产生了表示系统动态的四个微分方程。得到的结果在构型空间和相空间轨迹中得到直观体现。结果表明,一般情况下,初始摆动角度越大,模式越复杂,随后会出现混沌现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
28
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信