Jascha Kolberg, Yannik Schäfer, Christian Rathgeb, Christoph Busch
{"title":"On the Potential of Algorithm Fusion for Demographic Bias Mitigation in Face Recognition","authors":"Jascha Kolberg, Yannik Schäfer, Christian Rathgeb, Christoph Busch","doi":"10.1049/2024/1808587","DOIUrl":null,"url":null,"abstract":"<div>\n <p>With the rise of deep neural networks, the performance of biometric systems has increased tremendously. Biometric systems for face recognition are now used in everyday life, e.g., border control, crime prevention, or personal device access control. Although the accuracy of face recognition systems is generally high, they are not without flaws. Many biometric systems have been found to exhibit demographic bias, resulting in different demographic groups being not recognized with the same accuracy. This is especially true for facial recognition due to demographic factors, e.g., gender and skin color. While many previous works already reported demographic bias, this work aims to reduce demographic bias for biometric face recognition applications. In this regard, 12 face recognition systems are benchmarked regarding biometric recognition performance as well as demographic differentials, i.e., fairness. Subsequently, multiple fusion techniques are applied with the goal to improve the fairness in contrast to single systems. The experimental results show that it is possible to improve the fairness regarding single demographics, e.g., skin color or gender, while improving fairness for demographic subgroups turns out to be more challenging.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/1808587","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/1808587","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rise of deep neural networks, the performance of biometric systems has increased tremendously. Biometric systems for face recognition are now used in everyday life, e.g., border control, crime prevention, or personal device access control. Although the accuracy of face recognition systems is generally high, they are not without flaws. Many biometric systems have been found to exhibit demographic bias, resulting in different demographic groups being not recognized with the same accuracy. This is especially true for facial recognition due to demographic factors, e.g., gender and skin color. While many previous works already reported demographic bias, this work aims to reduce demographic bias for biometric face recognition applications. In this regard, 12 face recognition systems are benchmarked regarding biometric recognition performance as well as demographic differentials, i.e., fairness. Subsequently, multiple fusion techniques are applied with the goal to improve the fairness in contrast to single systems. The experimental results show that it is possible to improve the fairness regarding single demographics, e.g., skin color or gender, while improving fairness for demographic subgroups turns out to be more challenging.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues