Protecting ownership rights of ML models using watermarking in the light of adversarial attacks

Katarzyna Kapusta, Lucas Mattioli, Boussad Addad, Mohammed Lansari
{"title":"Protecting ownership rights of ML models using watermarking in the light of adversarial attacks","authors":"Katarzyna Kapusta,&nbsp;Lucas Mattioli,&nbsp;Boussad Addad,&nbsp;Mohammed Lansari","doi":"10.1007/s43681-023-00412-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present and analyze two novel—and seemingly distant—research trends in Machine Learning: ML watermarking and adversarial patches. First, we show how ML watermarking uses specially crafted inputs to provide a proof of model ownership. Second, we demonstrate how an attacker can craft adversarial samples in order to trigger an abnormal behavior in a model and thus perform an ambiguity attack on ML watermarking. Finally, we describe three countermeasures that could be applied in order to prevent ambiguity attacks. We illustrate our works using the example of a binary classification model for welding inspection.</p></div>","PeriodicalId":72137,"journal":{"name":"AI and ethics","volume":"4 1","pages":"95 - 103"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI and ethics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43681-023-00412-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present and analyze two novel—and seemingly distant—research trends in Machine Learning: ML watermarking and adversarial patches. First, we show how ML watermarking uses specially crafted inputs to provide a proof of model ownership. Second, we demonstrate how an attacker can craft adversarial samples in order to trigger an abnormal behavior in a model and thus perform an ambiguity attack on ML watermarking. Finally, we describe three countermeasures that could be applied in order to prevent ambiguity attacks. We illustrate our works using the example of a binary classification model for welding inspection.

在对抗性攻击中使用水印保护 ML 模型的所有权
在本文中,我们介绍并分析了机器学习领域的两个新颖且看似遥远的研究趋势:ML 水印和对抗补丁。首先,我们展示了 ML 水印如何使用特制输入来提供模型所有权证明。其次,我们展示了攻击者如何制作对抗样本,以触发模型中的异常行为,从而对 ML 水印进行模糊攻击。最后,我们介绍了可用于防止模糊攻击的三种对策。我们以用于焊接检测的二进制分类模型为例说明我们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信