Variable-fidelity sensors and observer uncertainty using touring multi-body periodic orbits to conduct cislunar SSA: preliminary study

Joshua M. Block, Adam P. Wilmer, Robert A Bettinger, David H. Curtis, Benjamin J Johnis
{"title":"Variable-fidelity sensors and observer uncertainty using touring multi-body periodic orbits to conduct cislunar SSA: preliminary study","authors":"Joshua M. Block, Adam P. Wilmer, Robert A Bettinger, David H. Curtis, Benjamin J Johnis","doi":"10.1177/15485129231225270","DOIUrl":null,"url":null,"abstract":"An accelerating interest in cislunar space and lunar orbit for civilian, commercial, and scientific missions requires a space situational awareness (SSA) architecture extending beyond geosynchronous orbit to promote space traffic management and safety. Space-based SSA in cislunar space is challenging due to difficulties associated with accurately estimating the position of the surveillance satellite, which is a foundational requirement for effectively performing the general SSA mission. Using multiple surveillance satellites with lower-fidelity sensors helps alleviate these concerns by aggregating multiple data sets with higher variance to achieve the same level or potentially improved accuracy as compared to fewer higher-quality sensors. A subset of Earth–Moon periodic orbits, herein identified as “touring” orbits, are used for an optical surveillance constellation with a target resident space object (RSO) in a L1 Halo orbit. Angles-only measurement data are processed utilizing an extended Kalman filter to estimate the position of the RSO. The analysis focuses on assessing the effectiveness of different numbers of surveillance satellites using touring cislunar periodic orbits for conducting the SSA mission relative to L1. Overall, this study finds that the use of an SSA constellation with low-fidelity sensors can match the performance achieved by a constellation featuring higher-fidelity sensors and reduced observer uncertainty for the observer orbits examined.","PeriodicalId":508000,"journal":{"name":"The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology","volume":"23 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129231225270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An accelerating interest in cislunar space and lunar orbit for civilian, commercial, and scientific missions requires a space situational awareness (SSA) architecture extending beyond geosynchronous orbit to promote space traffic management and safety. Space-based SSA in cislunar space is challenging due to difficulties associated with accurately estimating the position of the surveillance satellite, which is a foundational requirement for effectively performing the general SSA mission. Using multiple surveillance satellites with lower-fidelity sensors helps alleviate these concerns by aggregating multiple data sets with higher variance to achieve the same level or potentially improved accuracy as compared to fewer higher-quality sensors. A subset of Earth–Moon periodic orbits, herein identified as “touring” orbits, are used for an optical surveillance constellation with a target resident space object (RSO) in a L1 Halo orbit. Angles-only measurement data are processed utilizing an extended Kalman filter to estimate the position of the RSO. The analysis focuses on assessing the effectiveness of different numbers of surveillance satellites using touring cislunar periodic orbits for conducting the SSA mission relative to L1. Overall, this study finds that the use of an SSA constellation with low-fidelity sensors can match the performance achieved by a constellation featuring higher-fidelity sensors and reduced observer uncertainty for the observer orbits examined.
利用巡回多体周期轨道的可变保真传感器和观测器的不确定性来进行半月星空间分布:初步研究
人们对用于民用、商业和科学飞行任务的半月空间和月球轨道的兴趣日益浓厚,这就需要一个超越地球同步轨道的空间态势感知(SSA)架构,以促进空间交通管理和安全。由于难以准确估计监视卫星的位置,在半月空间进行天基 SSA 具有挑战性,而准确估计监视卫星的位置是有效执行一般 SSA 任务的基本要求。与使用较少的高质量传感器相比,使用多个具有较低保真度传感器的监视卫星可以通过汇聚方差较大的多个数据集来实现相同水平或可能更高的精度,从而有助于缓解这些问题。地月周期轨道的一个子集(在此称为 "巡回 "轨道)用于光学监视星座,目标驻留空间物体(RSO)位于 L1 Halo 轨道。利用扩展卡尔曼滤波器处理纯角度测量数据,以估计 RSO 的位置。分析的重点是评估不同数量的监视卫星使用巡回顺星周期轨道执行相对于 L1 的 SSA 任务的有效性。总之,这项研究发现,使用低保真度传感器的 SSA 星群,其性能可与具有高保真度传感器的星群相媲美,而且在所研究的观测者轨道上,观测者的不确定性也有所降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信