{"title":"Set up a supply chain observatory through the comparison of multi-criteria parsimonious methods","authors":"M. Butturi, F. Lolli, R. Gamberini","doi":"10.1108/bij-02-2023-0089","DOIUrl":null,"url":null,"abstract":"PurposeThis study presents the development of a supply chain (SC) observatory, which is a benchmarking solution to support companies within the same industry in understanding their positioning in terms of SC performance.Design/methodology/approachA case study is used to demonstrate the set-up of the observatory. Twelve experts on automatic equipment for the wrapping and packaging industry were asked to select a set of performance criteria taken from the literature and evaluate their importance for the chosen industry using multi-criteria decision-making (MCDM) techniques. To handle the high number of criteria without requiring a high amount of time-consuming effort from decision-makers (DMs), five subjective, parsimonious methods for criteria weighting are applied and compared.FindingsA benchmarking methodology is presented and discussed, aimed at DMs in the considered industry. Ten companies were ranked with regard to SC performance. The ranking solution of the companies was on average robust since the general structure of the ranking was very similar for all five weighting methodologies, though simplified-analytic hierarchy process (AHP) was the method with the greatest ability to discriminate between the criteria of importance and was considered faster to carry out and more quickly understood by the decision-makers.Originality/valueDeveloping an SC observatory usually requires managing a large number of alternatives and criteria. The developed methodology uses parsimonious weighting methods, providing DMs with an easy-to-use and time-saving tool. A future research step will be to complete the methodology by defining the minimum variation required for one or more criteria to reach a specific position in the ranking through the implementation of a post-fact analysis.","PeriodicalId":502853,"journal":{"name":"Benchmarking: An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Benchmarking: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/bij-02-2023-0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThis study presents the development of a supply chain (SC) observatory, which is a benchmarking solution to support companies within the same industry in understanding their positioning in terms of SC performance.Design/methodology/approachA case study is used to demonstrate the set-up of the observatory. Twelve experts on automatic equipment for the wrapping and packaging industry were asked to select a set of performance criteria taken from the literature and evaluate their importance for the chosen industry using multi-criteria decision-making (MCDM) techniques. To handle the high number of criteria without requiring a high amount of time-consuming effort from decision-makers (DMs), five subjective, parsimonious methods for criteria weighting are applied and compared.FindingsA benchmarking methodology is presented and discussed, aimed at DMs in the considered industry. Ten companies were ranked with regard to SC performance. The ranking solution of the companies was on average robust since the general structure of the ranking was very similar for all five weighting methodologies, though simplified-analytic hierarchy process (AHP) was the method with the greatest ability to discriminate between the criteria of importance and was considered faster to carry out and more quickly understood by the decision-makers.Originality/valueDeveloping an SC observatory usually requires managing a large number of alternatives and criteria. The developed methodology uses parsimonious weighting methods, providing DMs with an easy-to-use and time-saving tool. A future research step will be to complete the methodology by defining the minimum variation required for one or more criteria to reach a specific position in the ranking through the implementation of a post-fact analysis.