Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network

Optics Pub Date : 2024-02-26 DOI:10.3390/opt5010007
Daniel Richter, A. Magunia, M. Rebholz, Christian Ott, T. Pfeifer
{"title":"Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network","authors":"Daniel Richter, A. Magunia, M. Rebholz, Christian Ott, T. Pfeifer","doi":"10.3390/opt5010007","DOIUrl":null,"url":null,"abstract":"We simulate ultrafast electronic transitions in an atom and corresponding absorption line changes with a numerical, few-level model, similar to previous work. In addition, a convolutional neural network (CNN) is employed for the first time to predict electronic state populations based on the simulated modifications of the absorption lines. We utilize a two-level and four-level system, as well as a variety of laser-pulse peak intensities and detunings, to account for different common scenarios of light–matter interaction. As a first step towards the use of CNNs for experimental absorption data in the future, we apply two different noise levels to the simulated input absorption data.","PeriodicalId":516083,"journal":{"name":"Optics","volume":"43 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/opt5010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We simulate ultrafast electronic transitions in an atom and corresponding absorption line changes with a numerical, few-level model, similar to previous work. In addition, a convolutional neural network (CNN) is employed for the first time to predict electronic state populations based on the simulated modifications of the absorption lines. We utilize a two-level and four-level system, as well as a variety of laser-pulse peak intensities and detunings, to account for different common scenarios of light–matter interaction. As a first step towards the use of CNNs for experimental absorption data in the future, we apply two different noise levels to the simulated input absorption data.
利用卷积神经网络从强场修正吸收光谱重构电子种群
我们利用数值少级模型模拟了原子中的超快电子跃迁以及相应的吸收线变化,这与之前的工作类似。此外,我们还首次采用了卷积神经网络(CNN),根据模拟的吸收线变化预测电子状态群。我们利用两级和四级系统,以及各种激光脉冲峰值强度和失谐,来解释光与物质相互作用的不同常见情况。作为未来将 CNN 用于实验吸收数据的第一步,我们对模拟输入吸收数据应用了两种不同的噪声水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信